Epidemiology. 2018 Mar;29(2):183-190. doi: 10.1097/EDE.0000000000000789.
Validation data are used to estimate the extent of misclassification in epidemiologic studies. In the Penn MOMS cohort, prepregnancy body mass index is subject to misclassification, and validation data are available to estimate the extent of misclassification. We use these data to estimate the association between maternal prepregnancy body mass index and early preterm (<32 weeks) birth using a semi-Bayes hierarchical model, allowing for more flexible adjustment for misclassification.
We propose a two-stage model that first fits a Bayesian hierarchical model for the bias parameters in the validation study. This model shrinks bias parameters in different groups toward one another in an effort to gain precision and improve mean squared error. In the second stage, we draw random samples from the posterior distribution of the bias parameters to implement a probabilistic bias analysis adjusting for exposure misclassification in a frequentist outcome model.
Bias parameters from the hierarchical model were often more substantively reasonable and often had smaller variance. Adjusting results for misclassification generally attenuated the strength of the unadjusted associations. After adjusting for misclassification, underweight mothers were not at increased risk of early preterm birth relative to normal weight mothers. Severely obese mothers had an increased risk of early preterm birth relative to normal weight mothers.
The two-stage semi-Bayesian hierarchical model borrowed strength between group-specific bias parameters to adjust for exposure misclassification. Model results support evidence of an increased risk of early preterm birth among severely obese mothers, relative to normal weight mothers.
验证数据用于估计流行病学研究中分类错误的程度。在宾夕法尼亚州 MOMS 队列中,孕前体重指数存在分类错误,并且有验证数据可用于估计分类错误的程度。我们使用这些数据,通过半贝叶斯分层模型来估计母亲孕前体重指数与早期早产(<32 周)之间的关联,该模型允许对分类错误进行更灵活的调整。
我们提出了一个两阶段模型,首先拟合验证研究中偏倚参数的贝叶斯分层模型。该模型努力通过将不同组的偏倚参数向彼此收缩来获得精度并降低均方误差。在第二阶段,我们从偏倚参数的后验分布中抽取随机样本,以实施概率性偏倚分析,在频域结果模型中调整暴露分类错误。
分层模型中的偏倚参数通常更具实质性合理性,且方差通常更小。对分类错误进行调整通常会削弱未经调整的关联的强度。在调整分类错误后,与正常体重母亲相比,低体重母亲发生早期早产的风险没有增加。与正常体重母亲相比,严重肥胖母亲发生早期早产的风险增加。
两阶段半贝叶斯分层模型利用组间特定偏倚参数之间的优势来调整暴露分类错误。模型结果支持严重肥胖母亲发生早期早产的风险相对于正常体重母亲增加的证据。