Suppr超能文献

围产流行病学中分类错误的分层半贝叶斯方法。

Hierarchical Semi-Bayes Methods for Misclassification in Perinatal Epidemiology.

出版信息

Epidemiology. 2018 Mar;29(2):183-190. doi: 10.1097/EDE.0000000000000789.

Abstract

BACKGROUND

Validation data are used to estimate the extent of misclassification in epidemiologic studies. In the Penn MOMS cohort, prepregnancy body mass index is subject to misclassification, and validation data are available to estimate the extent of misclassification. We use these data to estimate the association between maternal prepregnancy body mass index and early preterm (<32 weeks) birth using a semi-Bayes hierarchical model, allowing for more flexible adjustment for misclassification.

METHODS

We propose a two-stage model that first fits a Bayesian hierarchical model for the bias parameters in the validation study. This model shrinks bias parameters in different groups toward one another in an effort to gain precision and improve mean squared error. In the second stage, we draw random samples from the posterior distribution of the bias parameters to implement a probabilistic bias analysis adjusting for exposure misclassification in a frequentist outcome model.

RESULTS

Bias parameters from the hierarchical model were often more substantively reasonable and often had smaller variance. Adjusting results for misclassification generally attenuated the strength of the unadjusted associations. After adjusting for misclassification, underweight mothers were not at increased risk of early preterm birth relative to normal weight mothers. Severely obese mothers had an increased risk of early preterm birth relative to normal weight mothers.

CONCLUSIONS

The two-stage semi-Bayesian hierarchical model borrowed strength between group-specific bias parameters to adjust for exposure misclassification. Model results support evidence of an increased risk of early preterm birth among severely obese mothers, relative to normal weight mothers.

摘要

背景

验证数据用于估计流行病学研究中分类错误的程度。在宾夕法尼亚州 MOMS 队列中,孕前体重指数存在分类错误,并且有验证数据可用于估计分类错误的程度。我们使用这些数据,通过半贝叶斯分层模型来估计母亲孕前体重指数与早期早产(<32 周)之间的关联,该模型允许对分类错误进行更灵活的调整。

方法

我们提出了一个两阶段模型,首先拟合验证研究中偏倚参数的贝叶斯分层模型。该模型努力通过将不同组的偏倚参数向彼此收缩来获得精度并降低均方误差。在第二阶段,我们从偏倚参数的后验分布中抽取随机样本,以实施概率性偏倚分析,在频域结果模型中调整暴露分类错误。

结果

分层模型中的偏倚参数通常更具实质性合理性,且方差通常更小。对分类错误进行调整通常会削弱未经调整的关联的强度。在调整分类错误后,与正常体重母亲相比,低体重母亲发生早期早产的风险没有增加。与正常体重母亲相比,严重肥胖母亲发生早期早产的风险增加。

结论

两阶段半贝叶斯分层模型利用组间特定偏倚参数之间的优势来调整暴露分类错误。模型结果支持严重肥胖母亲发生早期早产的风险相对于正常体重母亲增加的证据。

相似文献

7
Validity of birth certificate-derived maternal weight data.出生证明衍生的产妇体重数据的有效性。
Paediatr Perinat Epidemiol. 2014 May;28(3):203-12. doi: 10.1111/ppe.12120. Epub 2014 Mar 27.

本文引用的文献

3
Good practices for quantitative bias analysis.定量偏倚分析的良好实践。
Int J Epidemiol. 2014 Dec;43(6):1969-85. doi: 10.1093/ije/dyu149. Epub 2014 Jul 30.
5
Validity of birth certificate-derived maternal weight data.出生证明衍生的产妇体重数据的有效性。
Paediatr Perinat Epidemiol. 2014 May;28(3):203-12. doi: 10.1111/ppe.12120. Epub 2014 Mar 27.
6
Is probabilistic bias analysis approximately Bayesian?概率偏差分析是否近似贝叶斯方法?
Epidemiology. 2012 Jan;23(1):151-8. doi: 10.1097/EDE.0b013e31823b539c.
10
Bayesian methods for highly correlated exposure data.用于高度相关暴露数据的贝叶斯方法。
Epidemiology. 2007 Mar;18(2):199-207. doi: 10.1097/01.ede.0000256320.30737.c0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验