From the Department of Epidemiology, Rollins School of Public Health, Emory University.
Department of Global Health, Rollins School of Public Health, Emory University.
Epidemiology. 2021 Mar 1;32(2):157-161. doi: 10.1097/EDE.0000000000001314.
Black, Hispanic, and Indigenous persons in the United States have an increased risk of SARS-CoV-2 infection and death from COVID-19, due to persistent social inequities. However, the magnitude of the disparity is unclear because race/ethnicity information is often missing in surveillance data.
We quantified the burden of SARS-CoV-2 notification, hospitalization, and case fatality rates in an urban county by racial/ethnic group using combined race/ethnicity imputation and quantitative bias analysis for misclassification.
The ratio of the absolute racial/ethnic disparity in notification rates after bias adjustment, compared with the complete case analysis, increased 1.3-fold for persons classified Black and 1.6-fold for those classified Hispanic, in reference to classified White persons.
These results highlight that complete case analyses may underestimate absolute disparities in notification rates. Complete reporting of race/ethnicity information is necessary for health equity. When data are missing, quantitative bias analysis methods may improve estimates of racial/ethnic disparities in the COVID-19 burden.
由于持续存在的社会不平等,美国的黑人和西班牙裔以及原住民感染 SARS-CoV-2 病毒和 COVID-19 死亡的风险增加。然而,由于监测数据中经常缺少种族/民族信息,因此尚不清楚这种差异的程度。
我们通过种族/民族合并填补和定量偏倚分析对分类错误进行校正,按种族/民族群体量化了一个城市县的 SARS-CoV-2 通知、住院和病死率负担。
与完整病例分析相比,偏倚校正后通知率的绝对种族/民族差异的比值,黑人增加了 1.3 倍,西班牙裔增加了 1.6 倍,而白人则为参照。
这些结果表明,完整病例分析可能低估了通知率方面的绝对差异。完整报告种族/民族信息对于健康公平至关重要。当数据缺失时,定量偏倚分析方法可以提高 COVID-19 负担中种族/民族差异的估计值。