Suppr超能文献

小样本中多水平潜变量模型更稳定的贝叶斯估计的先验规范:两种不同方法的比较研究

Prior Specification for More Stable Bayesian Estimation of Multilevel Latent Variable Models in Small Samples: A Comparative Investigation of Two Different Approaches.

作者信息

Zitzmann Steffen, Helm Christoph, Hecht Martin

机构信息

Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.

Institute for the Management and Economics of Education, University of Teacher Education Zug, Zug, Switzerland.

出版信息

Front Psychol. 2021 Jan 25;11:611267. doi: 10.3389/fpsyg.2020.611267. eCollection 2020.

Abstract

Bayesian approaches for estimating multilevel latent variable models can be beneficial in small samples. Prior distributions can be used to overcome small sample problems, for example, when priors that increase the accuracy of estimation are chosen. This article discusses two different but not mutually exclusive approaches for specifying priors. Both approaches aim at stabilizing estimators in such a way that the Mean Squared Error (MSE) of the estimator of the between-group slope will be small. In the first approach, the MSE is decreased by specifying a slightly informative prior for the group-level variance of the predictor variable, whereas in the second approach, the decrease is achieved directly by using a slightly informative prior for the slope. Mathematical and graphical inspections suggest that both approaches can be effective for reducing the MSE in small samples, thus rendering them attractive in these situations. The article also discusses how these approaches can be implemented in M.

摘要

用于估计多级潜在变量模型的贝叶斯方法在小样本中可能是有益的。先验分布可用于克服小样本问题,例如,当选择提高估计准确性的先验时。本文讨论了两种不同但并非相互排斥的指定先验的方法。两种方法都旨在以组间斜率估计量的均方误差(MSE)较小的方式稳定估计量。在第一种方法中,通过为预测变量的组级方差指定一个信息略丰富的先验来降低MSE,而在第二种方法中,通过直接为斜率使用一个信息略丰富的先验来实现降低。数学和图形检验表明,两种方法在减少小样本中的MSE方面都可能有效,因此在这些情况下具有吸引力。本文还讨论了如何在M中实现这些方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0e2/7868428/05a79f41c298/fpsyg-11-611267-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验