Zitzmann Steffen, Helm Christoph, Hecht Martin
Hector Research Institute of Education Sciences and Psychology, University of Tübingen, Tübingen, Germany.
Institute for the Management and Economics of Education, University of Teacher Education Zug, Zug, Switzerland.
Front Psychol. 2021 Jan 25;11:611267. doi: 10.3389/fpsyg.2020.611267. eCollection 2020.
Bayesian approaches for estimating multilevel latent variable models can be beneficial in small samples. Prior distributions can be used to overcome small sample problems, for example, when priors that increase the accuracy of estimation are chosen. This article discusses two different but not mutually exclusive approaches for specifying priors. Both approaches aim at stabilizing estimators in such a way that the Mean Squared Error (MSE) of the estimator of the between-group slope will be small. In the first approach, the MSE is decreased by specifying a slightly informative prior for the group-level variance of the predictor variable, whereas in the second approach, the decrease is achieved directly by using a slightly informative prior for the slope. Mathematical and graphical inspections suggest that both approaches can be effective for reducing the MSE in small samples, thus rendering them attractive in these situations. The article also discusses how these approaches can be implemented in M.
用于估计多级潜在变量模型的贝叶斯方法在小样本中可能是有益的。先验分布可用于克服小样本问题,例如,当选择提高估计准确性的先验时。本文讨论了两种不同但并非相互排斥的指定先验的方法。两种方法都旨在以组间斜率估计量的均方误差(MSE)较小的方式稳定估计量。在第一种方法中,通过为预测变量的组级方差指定一个信息略丰富的先验来降低MSE,而在第二种方法中,通过直接为斜率使用一个信息略丰富的先验来实现降低。数学和图形检验表明,两种方法在减少小样本中的MSE方面都可能有效,因此在这些情况下具有吸引力。本文还讨论了如何在M中实现这些方法。