Suppr超能文献

细菌生理学对亚硒酸盐加工、纳米材料生物发生及其热力学稳定性的影响。

Influence of Bacterial Physiology on Processing of Selenite, Biogenesis of Nanomaterials and Their Thermodynamic Stability.

机构信息

Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.

Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy.

出版信息

Molecules. 2019 Jul 11;24(14):2532. doi: 10.3390/molecules24142532.

Abstract

We explored how sp. MPV1 can convert up to 2.5 mM selenite within 120 h, surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology. Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these nanostructures. Alternatively, selenium nanorods were observed for bacterial cells exposed to high selenite concentration or under controlled metabolism. Biogenic nanomaterials were enclosed by an organic material in part composed of amphiphilic biomolecules, which could form nanosized structures independently. Bacterial physiology influences the surface charge characterizing the organic material, suggesting its diverse biomolecular composition and its involvement in the tuning of the nanomaterial morphology. Finally, the organic material is in thermodynamic equilibrium with nanomaterials and responsible for their electrosteric stabilization, as changes in the temperature slightly influence the stability of biogenic compared to chemogenic nanomaterials.

摘要

我们探讨了 sp.MPV1 如何在 120 小时内将高达 2.5mM 的亚硒酸盐转化,同时能在高含氧阴离子浓度的挑战下存活。数据表明,当细菌暴露于低浓度亚硒酸盐时,会发生基于硫醇的生物化学反应,而当超过 2mM 含氧阴离子时,酶系统则负责去除含氧阴离子。亚硒酸盐的生物处理会产生硒纳米材料,其大小和形态取决于细菌的生理特性。硒纳米颗粒总是由 MPV1 细胞产生,平均直径在 90 到 140nm 之间,我们推断这构成了这些纳米结构的热力学稳定范围。另一方面,当细菌细胞暴露于高浓度亚硒酸盐或在受控代谢下时,会观察到硒纳米棒。生物合成的纳米材料被部分由两亲生物分子组成的有机材料所包围,该有机材料可以独立形成纳米级结构。细菌的生理特性会影响表征有机材料的表面电荷,表明其具有多样化的生物分子组成,并参与纳米材料形态的调整。最后,有机材料与纳米材料处于热力学平衡状态,并负责它们的电动稳定,因为温度的变化会轻微影响生物合成纳米材料相对于化学合成纳米材料的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/518c/6681009/f18ca054afd0/molecules-24-02532-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验