Suppr超能文献

伴侣蛋白功能及其他方面的RNA测序分析工作流程指南

A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond.

作者信息

Lang Benjamin J, Holton Kristina M, Gong Jianlin, Calderwood Stuart K

机构信息

Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.

Research Computing, Harvard Medical School, Boston, MA, USA.

出版信息

Methods Mol Biol. 2018;1709:233-252. doi: 10.1007/978-1-4939-7477-1_18.

Abstract

RNA sequencing (RNA-seq) is a powerful method of transcript analysis that allows for the sequence identification and quantification of cellular transcripts. RNA-seq has many applications including differential gene expression (DE) analysis, gene fusion detection, allele-specific expression, isoform and splice variant quantification, and identification of novel genes. These applications can be used for downstream systems biology analyses such as gene ontology analysis to provide insights into cellular processes altered between biological conditions. Given the wide range of signaling pathways subject to chaperone activity as well as numerous chaperone functions in RNA metabolism, RNA-seq may provide a valuable tool for the study of chaperone proteins in biology and disease. This chapter outlines an example RNA-seq workflow to determine differentially expressed (DE) genes between two or more sample conditions and provides some considerations for RNA-seq experimental design.

摘要

RNA测序(RNA-seq)是一种强大的转录本分析方法,可实现细胞转录本的序列鉴定和定量分析。RNA测序有许多应用,包括差异基因表达(DE)分析、基因融合检测、等位基因特异性表达、异构体和剪接变体定量以及新基因鉴定。这些应用可用于下游系统生物学分析,如基因本体分析,以深入了解生物条件之间改变的细胞过程。鉴于伴侣蛋白活性涉及广泛的信号通路以及RNA代谢中的众多伴侣蛋白功能,RNA测序可能为生物学和疾病中伴侣蛋白的研究提供有价值的工具。本章概述了一个示例RNA测序工作流程,用于确定两个或更多样本条件之间的差异表达(DE)基因,并提供了一些RNA测序实验设计的注意事项。

相似文献

1
A Workflow Guide to RNA-seq Analysis of Chaperone Function and Beyond.
Methods Mol Biol. 2018;1709:233-252. doi: 10.1007/978-1-4939-7477-1_18.
2
A Workflow Guide to RNA-Seq Analysis of Chaperone Function and Beyond.
Methods Mol Biol. 2023;2693:39-60. doi: 10.1007/978-1-0716-3342-7_4.
3
A Guide for Designing and Analyzing RNA-Seq Data.
Methods Mol Biol. 2018;1783:35-80. doi: 10.1007/978-1-4939-7834-2_3.
4
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
BMC Bioinformatics. 2016 Feb 4;17:66. doi: 10.1186/s12859-016-0923-y.
6
Short-Read RNA-Seq.
Methods Mol Biol. 2024;2822:245-262. doi: 10.1007/978-1-0716-3918-4_17.
7
RNA-Seq: revelation of the messengers.
Trends Plant Sci. 2013 Apr;18(4):175-9. doi: 10.1016/j.tplants.2013.02.001. Epub 2013 Mar 5.
8
RNA Sequencing and Analysis.
Cold Spring Harb Protoc. 2015 Apr 13;2015(11):951-69. doi: 10.1101/pdb.top084970.
9
VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis.
BMC Bioinformatics. 2018 Apr 12;19(1):135. doi: 10.1186/s12859-018-2139-9.
10
RNA-Seq Experiment and Data Analysis.
Methods Mol Biol. 2016;1366:99-114. doi: 10.1007/978-1-4939-3127-9_9.

引用本文的文献

2
Effects of Qi Teng Xiao Zhuo granules on circRNA expression profiles in rats with chronic glomerulonephritis.
Drug Des Devel Ther. 2019 Jun 4;13:1901-1913. doi: 10.2147/DDDT.S191386. eCollection 2019.

本文引用的文献

3
A survey of best practices for RNA-seq data analysis.
Genome Biol. 2016 Jan 26;17:13. doi: 10.1186/s13059-016-0881-8.
4
Discovering New Biology through Sequencing of RNA.
Plant Physiol. 2015 Nov;169(3):1524-31. doi: 10.1104/pp.15.01081. Epub 2015 Sep 9.
5
Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud.
PLoS Comput Biol. 2015 Aug 6;11(8):e1004393. doi: 10.1371/journal.pcbi.1004393. eCollection 2015 Aug.
6
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
7
Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis.
Oncogene. 2015 Oct;34(43):5460-71. doi: 10.1038/onc.2015.1. Epub 2015 Feb 9.
9
Gene Ontology Consortium: going forward.
Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56. doi: 10.1093/nar/gku1179. Epub 2014 Nov 26.
10
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验