Boston University School of Medicine, Boston, Massachusetts.
University of Manchester and Central Manchester NHS Foundation Trust, Manchester, UK.
Arthritis Rheumatol. 2018 Feb;70(2):185-192. doi: 10.1002/art.40355. Epub 2018 Jan 3.
National estimates of arthritis prevalence rely on a single survey question about doctor-diagnosed arthritis without using survey information on joint symptoms, even though some subjects with only the latter have been shown to have arthritis. The sensitivity of the current surveillance definition is only 53% and 69% in subjects ages 45-64 years and ages ≥65 years, respectively, resulting in misclassification of nearly one-half and one-third of subjects in those age groups. This study was undertaken to estimate arthritis prevalence based on an expansive surveillance definition that is adjusted for the measurement errors in the current definition.
Using the 2015 National Health Interview Survey, we developed a Bayesian multinomial latent class model for arthritis surveillance based on doctor-diagnosed arthritis, joint symptoms, and whether symptom duration exceeded 3 months.
Of 33,672 participants, 19.3% of men and 16.7% of women ages 18-64 years and 15.7% of men and 13.5% of women ages ≥65 years affirmed joint symptoms without doctor-diagnosed arthritis. The measurement error-adjusted prevalence of arthritis was 29.9% (95% Bayesian probability interval [95% PI] 23.4-42.3) in men ages 18-64 years, 31.2% (95% PI 25.8-44.1) in women ages 18-64 years, 55.8% (95% PI 49.9-70.4) in men ages ≥65 years, and 68.7% (95% PI 62.1-79.9) in women ages ≥65 years. Arthritis affected 91.2 million adults (of 247.7 million; 36.8%) in the US in 2015, which included 61.1 million persons between 18 and 64 years of age (of 199.9 million; 30.6%). Our arthritis prevalence estimate was 68% higher than the previously reported national estimate.
Arthritis prevalence in the US population has been substantially underestimated, especially among adults younger than 65 years of age.
关节炎患病率的全国估计数依赖于一个关于医生诊断的关节炎的单一调查问题,而不使用关于关节症状的调查信息,尽管已经表明,只有后者的一些患者患有关节炎。目前监测定义的敏感性在 45-64 岁和≥65 岁的患者中分别仅为 53%和 69%,导致这两个年龄组中近一半和三分之一的患者被错误分类。本研究旨在根据一种广泛的监测定义来估计关节炎的患病率,该定义对当前定义中的测量误差进行了调整。
使用 2015 年全国健康访谈调查,我们根据医生诊断的关节炎、关节症状以及症状持续时间是否超过 3 个月,为关节炎监测开发了贝叶斯多项潜在类别模型。
在 33672 名参与者中,18-64 岁的男性中有 19.3%,女性中有 16.7%,≥65 岁的男性中有 15.7%,女性中有 13.5%,他们都有过关节症状,但没有医生诊断的关节炎。18-64 岁的男性中关节炎的测量误差调整后患病率为 29.9%(95%贝叶斯概率区间[95%PI]23.4-42.3),18-64 岁的女性中为 31.2%(95%PI 25.8-44.1),≥65 岁的男性中为 55.8%(95%PI 49.9-70.4),≥65 岁的女性中为 68.7%(95%PI 62.1-79.9)。2015 年,关节炎影响了美国 24770 万成年人中的 9120 万人(36.8%),其中 18-64 岁的成年人有 6110 万人(30.6%)。我们的关节炎患病率估计值比之前报告的全国估计值高出 68%。
美国人群中的关节炎患病率被大大低估,尤其是在 65 岁以下的成年人中。