Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Vic., Australia.
Acta Physiol (Oxf). 2018 Mar;222(3). doi: 10.1111/apha.13004. Epub 2017 Dec 15.
The Guardian of the Genome p53 has been established as a potent tumour suppressor. However, culminating from seminal findings in rodents more than a decade ago, several studies have demonstrated that p53 is required to maintain basal mitochondrial function [ie, respiration and reactive oxygen species (ROS) homeostasis]. Specifically, via its role(s) as a tumour suppressor, p53 intimately surveys cellular DNA damage, in particular mitochondrial DNA (mtDNA), to ensure that the mitochondrial network is carefully monitored and cell viability is upheld, because aberrant mtDNA damage leads to apoptosis and widespread cellular perturbations. Indeed, data from rodents and humans have demonstrated that p53 forms an integral component of the exercise-induced signal transduction network regulating skeletal muscle mitochondrial remodelling. In response to exercise-induced disruptions to cellular homeostasis that have the potential to harm mtDNA (eg, contraction-stimulated ROS emissions), appropriate p53-regulated, mitochondrial turnover responses prevail to protect the genome and ultimately facilitate a shift from aerobic glycolysis to oxidative phosphorylation, adaptations critical for endurance-based exercise that are commensurate with p53's role as a tumour suppressor. Despite these observations, several discrepancies exist between rodent and human studies pinpointing p53 subcellular trafficking from nuclear-to-mitochondrial compartments following acute exercise. Such interspecies differences in p53 activity and the plausible p53-mediated adaptations to chronic exercise training will be discussed herein.
基因组守护者 p53 已被确立为一种有效的肿瘤抑制因子。然而,从十多年前啮齿动物的开创性发现中得出的结论是,多项研究表明 p53 对于维持基础线粒体功能[即呼吸和活性氧(ROS)稳态]是必需的。具体来说,通过其作为肿瘤抑制因子的作用,p53 密切监测细胞 DNA 损伤,特别是线粒体 DNA(mtDNA),以确保线粒体网络得到仔细监测,细胞活力得以维持,因为异常的 mtDNA 损伤会导致细胞凋亡和广泛的细胞紊乱。事实上,来自啮齿动物和人类的数据表明,p53 是调节骨骼肌线粒体重塑的运动诱导信号转导网络的一个组成部分。作为响应,细胞内稳态受到运动引起的破坏,这些破坏有可能损害 mtDNA(例如,收缩刺激的 ROS 排放),适当的 p53 调节的线粒体周转率反应会占主导地位,以保护基因组,并最终促进从有氧糖酵解向氧化磷酸化的转变,这些适应对于基于耐力的运动至关重要,与 p53 作为肿瘤抑制因子的作用相一致。尽管有这些观察结果,但在急性运动后 p53 从核到线粒体区室的亚细胞运输方面,啮齿动物和人类研究之间存在一些差异。本文将讨论种间差异的 p53 活性和可能的 p53 介导的对慢性运动训练的适应。