Fields Evan, Wren Jonathan D, Georgescu Constantin, Daum John R, Gorbsky Gary J
Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
Stem Cell Res. 2018 Jan;26:1-7. doi: 10.1016/j.scr.2017.11.009. Epub 2017 Nov 21.
The cancer stem cell model postulates that tumors are hierarchically organized with a minor population, the cancer stem cells, exhibiting unlimited proliferative potential. These cells give rise to the bulk of tumor cells, which retain a limited ability to divide. Without successful targeting of cancer stem cells, tumor reemergence after therapy is likely. However, identifying target pathways essential for cancer stem cell proliferation has been challenging. Here, using a transcriptional network analysis termed GAMMA, we identified 50 genes whose correlation patterns suggested involvement in cancer stem cell division. Using RNAi depletion, we found that 21 of these target genes showed preferential growth inhibition in a breast cancer stem cell model. More detailed initial analysis of 6 of these genes revealed 4 with clear roles in the fidelity of chromosome segregation. This study reveals the strong predictive potential of transcriptional network analysis in increasing the efficiency of successful identification of novel proliferation dependencies for cancer stem cells.
癌症干细胞模型假定肿瘤呈分层组织,其中一小部分细胞即癌症干细胞具有无限增殖潜能。这些细胞产生大部分肿瘤细胞,而肿瘤细胞的分裂能力有限。如果不能成功靶向癌症干细胞,治疗后肿瘤很可能复发。然而,确定对癌症干细胞增殖至关重要的靶标途径一直具有挑战性。在此,我们使用一种名为GAMMA的转录网络分析方法,鉴定出50个基因,其相关模式表明参与癌症干细胞分裂。通过RNAi敲除,我们发现这些靶标基因中有21个在乳腺癌干细胞模型中表现出优先生长抑制作用。对其中6个基因进行更详细的初步分析发现,有4个基因在染色体分离的保真度方面具有明确作用。这项研究揭示了转录网络分析在提高成功鉴定癌症干细胞新的增殖依赖性效率方面具有强大的预测潜力。