Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Mar 2;82:136-168. doi: 10.1016/j.pnpbp.2017.11.020. Epub 2017 Nov 24.
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
转录组数据中关键基因的鉴定是一个巨大的挑战。我们对微阵列报告的回顾揭示了 88 个基因,其转录在大脑中受到糖皮质激素(如皮质醇、皮质酮和地塞米松)的一致调节。可重复的转录组数据与生化和生理数据相结合,创建了 GC 诱导效应的综合视图。报告最频繁的基因是 Errfi1 和 Ddit4。它们的上调与调节生长因子和 mTORC1 信号(Gab1、Tsc22d3、Dusp1、Ndrg2、Ppp5c 和 Sesn1)和细胞周期进展(Ccnd1、Cdkn1a 和 Cables1)的基因转录改变有关。GC 诱导的细胞功能重编程涉及负责转录调节的基因的 mRNA 水平变化(Klf9、Bcl6、Klf15、Tle3、Cxxc5、Litaf、Tle4、Jun、Sox4、Sox2、Sox9、Irf1、Sall2、Nfkbia 和 Id1)和 mRNA 的选择性降解(Tob2)。其他基因参与代谢调节(Gpd1、Aldoc 和 Pdk4)、肌动蛋白细胞骨架(Myh2、Nedd9、Mical2、Rhou、Arl4d、Osbpl3、Arhgef3、Sdc4、Rdx、Wipf3、Chst1 和 Hepacam)、自噬(Eva1a 和 Plekhf1)、囊泡运输(Rhob、Ehd3、Vps37b 和 Scamp2)、缝隙连接(Gjb6)、免疫反应(Tiparp、Mertk、Lyve1 和 Il6r)、甲状腺激素介导的信号(Thra 和 Sult1a1)、钙(Calm2)、肾上腺素/去甲肾上腺素(Adcy9 和 Adra1d)、神经肽 Y(Npy1r)和组氨酸(Hdc)。GC 还影响多胺(AziN1)和牛磺酸(Cdo1)合成的基因。GC 的作用受到 Sgk1、Fkbp5 和 Nr3c1 转录的反馈机制的限制。GC 诱导的一个副作用是活性氧的产生增加。现有数据表明,大脑对 GC 的反应是紧急模式的一部分,其特征是核心活动失活、炎症抑制、投资(生长)受限、提高能量产生效率以及去除不必要或功能失调的细胞成分,以在应激反应中保存能量并维持营养供应。