Suppr超能文献

Metabolism of small RNAs in cultured human cells.

作者信息

Choudhury K, Choudhury I, Eliceiri G L

机构信息

Department of Pathology, St. Louis University School of Medicine, Missouri 63104.

出版信息

J Cell Physiol. 1989 Feb;138(2):433-8. doi: 10.1002/jcp.1041380227.

Abstract

There are gaps in what is known about the metabolism of some mammalian small RNA species. Our present observations can be summarized as follows. The level of radiolabeled mature U1 RNA doubled between 2 and 24 hr of label chase, while that of all other small RNA species tested did not change. These results are compatible with the possibility that the nucleotide precursor pool for U1 RNA transcription may be partly segregated, or that there may be a second pathway of U1 RNA formation. Precursors of nucleolar U3 RNA were detected whose electrophoretic mobilities are equivalent to those of transcripts approximately 14 and approximately 8 nucleotides longer than the mature species, and which are apparently cytoplasmic. The ladder of U2 RNA precursors showed a gap, suggesting that some of the cleavages during U2 RNA processing are endonucleolytic. We detected an apparent U5 RNA precursor whose electrophoretic mobility is equivalent to that of a species approximately 1 nucleotide longer than mature U5 RNA. There was a predominant band in the middle of the ladder of U4 RNA precursors (apparently approximately 3 nucleotides longer than mature U4 RNA) which suggests that U4 RNA maturation may pause briefly at that intermediate. There are apparently two additional species of mature hY3 RNA, which are less abundant and are about 1 and 2 bases longer than the major hY3 RNA species. An apparent hY3 RNA precursor was detected, which may be approximately 2-3 nucleotides longer than the main mature hY3 RNA species.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验