Bchellaoui Nizar, Hayat Zain, Mami Mohamed, Dorbez-Sridi Rachida, El Abed Abdel Illah
Laboratoire de Photonique Quantique et Moléculaire, CNRS-UMR 8537, ENS-Paris Saclay, CentraleSupélec, 61 avenue du Président Wilson, 94235, Cachan, Cedex, France.
Laboratoire de Physico-chimie des Matériaux, University of Monastir, Monastir, Tunisia.
Sci Rep. 2017 Nov 27;7(1):16326. doi: 10.1038/s41598-017-16554-4.
The fabrication of mesoporous silica microcapsules with a highly controlled particle size ranging in the micrometer size presents a major challenge in many academic and industrial research areas, such as for the developement of smart drug delivery systems with a well controlled loading and release of (bio)active molecules. Many studies based on the solvent evaporation or solvent diffusion methods have been developed during the last two decades in order to control the particle size, which is often found to range at a sub-micrometer scale. Droplet-based microfluidics proved during the last decade a powerful tool to produce highly monodisperse and mesoporous silica solid microspheres with a controllable size in the micrometer range. We show in the present study, in contrast with previous microfluidic-assisted approaches, that a better control of the diffusion of the silica precursor sol in a surrounding perfluorinated oil phase during the silica formation process allows for the formation of highly monodisperse mesoporous silica microcapsules with a diameter ranging in the 10 micrometer range. We show also, using optical, scanning and transmission electron microscopies, small angle x-ray diffraction and BET measurements, that the synthesized mesoporous silica microcapsules exhibit a soft-like thin shell with a thickness of about 1 μm, across which 5.9 nm sized mesopores form a well-ordered hexagonal 2D network. We suggest and validate experimentally a model where the formation of such microcapsules is controlled by the solvent evaporation process at the droplet-air interface.
制备粒径高度可控且在微米级范围内的介孔二氧化硅微胶囊,在许多学术和工业研究领域都是一项重大挑战,例如开发能够精确控制(生物)活性分子负载和释放的智能药物递送系统。在过去二十年中,人们基于溶剂蒸发或溶剂扩散方法开展了许多研究,以控制粒径,但其粒径往往处于亚微米级范围。在过去十年中,基于液滴的微流控技术被证明是一种强大的工具,可用于制备粒径可控且在微米范围内高度单分散的介孔二氧化硅固体微球。在本研究中,与之前的微流控辅助方法不同,我们发现,在二氧化硅形成过程中,更好地控制二氧化硅前驱体溶胶在周围全氟油相中的扩散,能够形成直径在10微米范围内的高度单分散介孔二氧化硅微胶囊。我们还通过光学显微镜、扫描电子显微镜和透射电子显微镜、小角X射线衍射以及BET测量表明,合成的介孔二氧化硅微胶囊具有厚度约为1μm的类似软质的薄壳,5.9nm大小的介孔在其中形成了有序的六方二维网络。我们提出并通过实验验证了一个模型,即此类微胶囊的形成是由液滴 - 空气界面处的溶剂蒸发过程控制的。