Suppr超能文献

使用模型降阶技术时简化 QSP 模型的选择和鉴定。

Selection and Qualification of Simplified QSP Models When Using Model Order Reduction Techniques.

机构信息

School of Pharmacy, University of Otago, Dunedin, New Zealand.

Translational Medicine Center, Ono Pharmaceutical Co., Ltd., Osaka, Japan.

出版信息

AAPS J. 2017 Nov 27;20(1):2. doi: 10.1208/s12248-017-0170-9.

Abstract

Quantitative systems pharmacology (QSP) models are increasingly used in drug development to provide a deep understanding of the mechanism of action of drugs and to identify appropriate disease targets. Such models are, however, not suitable for estimation purposes due to their high dimensionality. Based on any desired and specific input-output relationship, the system may be reduced to a model with fewer states and parameters. However, any simplification process will be a trade-off between model performance and complexity. In this study, we develop a weighted composite criterion which brings together the opposing indices of performance and dimensionality. The weighting factor can be determined by qualification of the simplified model based on a visual predictive check (VPC) using the precision of each parameter. The weighted criterion and model qualification techniques were illustrated with three examples: a simple compartmental pharmacokinetic model, a physiologically based pharmacokinetic (PBPK) example, and a semimechanistic model for bone mineral density. When considering the PBPK example, this automated search identified the same reduced model which had been detected in a previous report, as well as a simpler model which had not been previously identified. The simpler bone mineral density model provided an adequate description of the response even after 1 year from the initiation of treatment. The proposed criterion together with a VPC provides a natural way for model order reduction that can be fully automated and applied to multiscale models.

摘要

定量系统药理学(QSP)模型越来越多地用于药物开发,以提供对药物作用机制的深入了解,并确定适当的疾病靶点。然而,由于其高维性,这些模型不适合用于估计目的。基于任何所需的特定输入-输出关系,系统可以简化为具有更少状态和参数的模型。然而,任何简化过程都将在模型性能和复杂性之间进行权衡。在这项研究中,我们开发了一种加权综合标准,该标准汇集了性能和维度的对立指标。权重因子可以根据简化模型的可视化预测检查(VPC)的资格来确定,该 VPC 使用每个参数的精度来确定。加权标准和模型资格技术通过三个示例进行了说明:一个简单的房室药代动力学模型、一个基于生理学的药代动力学(PBPK)示例和一个用于骨密度的半机械模型。在考虑 PBPK 示例时,这种自动搜索确定了与之前报告中检测到的相同的简化模型,以及之前未检测到的更简单的模型。更简单的骨密度模型甚至在治疗开始 1 年后也能对反应提供足够的描述。所提出的标准结合 VPC 为模型降阶提供了一种自然的方法,该方法可以完全自动化,并应用于多尺度模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验