Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
Cell Tissue Res. 2018 Jul;373(1):91-109. doi: 10.1007/s00441-017-2734-5. Epub 2017 Nov 29.
Parkinson's disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors. While investigations of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based therapeutic approaches.
帕金森病(PD)是一种复杂且异质性疾病的典型范例,其特征是多方面且多样化的运动和非运动症状,以及遗传和环境风险因素的不同可能相互作用。虽然对个别 PD 致病突变和风险因素的单独研究为提高我们对 PD 背后分子机制的理解提供了重要的见解,但越来越多的共识认为,更全面地理解这些机制需要对分子网络中的多因素疾病相关扰动进行综合建模。确定和解释多种与 PD 相关的分子变化的组合效应可能为早期可靠的诊断和更有效的治疗干预铺平道路。本综述概述了近年来开发的用于研究复杂疾病中多因素分子改变的计算系统生物学方法,重点是 PD 研究应用。讨论了不同细胞途径和网络分析以及用于研究与 PD 相关的组学数据的多元机器学习技术的优缺点,并提出了利用多种生物知识和数据源协同作用的策略。最后展望概述了将系统生物学在 PD 中的发现转化为新的基于组学的诊断工具和靶向、基于药物的治疗方法的具体挑战和可能的下一步。