Suppr超能文献

微生物的数学建模:代谢、基因表达和生长。

Mathematical modelling of microbes: metabolism, gene expression and growth.

机构信息

University Grenoble-Alpes, Inria, Grenoble, France

University Côte d'Azur, Inria, INRA, CNRS, UPMC University Paris 06, BIOCORE team, Sophia-Antipolis, France.

出版信息

J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0502.

Abstract

The growth of microorganisms involves the conversion of nutrients in the environment into biomass, mostly proteins and other macromolecules. This conversion is accomplished by networks of biochemical reactions cutting across cellular functions, such as metabolism, gene expression, transport and signalling. Mathematical modelling is a powerful tool for gaining an understanding of the functioning of this large and complex system and the role played by individual constituents and mechanisms. This requires models of microbial growth that provide an integrated view of the reaction networks and bridge the scale from individual reactions to the growth of a population. In this review, we derive a general framework for the kinetic modelling of microbial growth from basic hypotheses about the underlying reaction systems. Moreover, we show that several families of approximate models presented in the literature, notably flux balance models and coarse-grained whole-cell models, can be derived with the help of additional simplifying hypotheses. This perspective clearly brings out how apparently quite different modelling approaches are related on a deeper level, and suggests directions for further research.

摘要

微生物的生长包括将环境中的营养物质转化为生物量,主要是蛋白质和其他大分子。这种转化是通过跨越细胞功能的生化反应网络来实现的,例如代谢、基因表达、运输和信号传递。数学建模是理解这个庞大而复杂系统的功能以及个体成分和机制所起作用的有力工具。这需要微生物生长模型提供对反应网络的综合视图,并在从单个反应到种群生长的尺度上进行衔接。在这篇综述中,我们从关于基础反应系统的基本假设出发,推导出微生物生长的动力学建模的一般框架。此外,我们还表明,文献中提出的几种近似模型家族,特别是通量平衡模型和粗粒度全细胞模型,可以在其他简化假设的帮助下推导出来。这种观点清楚地表明,表面上截然不同的建模方法在更深层次上是相关的,并为进一步的研究提出了方向。

相似文献

1
Mathematical modelling of microbes: metabolism, gene expression and growth.
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0502.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Modelling microbial metabolic rewiring during growth in a complex medium.
BMC Genomics. 2016 Nov 24;17(1):970. doi: 10.1186/s12864-016-3311-0.
5
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Biochem Soc Trans. 2015 Dec;43(6):1164-71. doi: 10.1042/BST20150146.
6
SysBioMed report: advancing systems biology for medical applications.
IET Syst Biol. 2009 May;3(3):131-6. doi: 10.1049/iet-syb.2009.0005.
7
An insight to flux-balance analysis for biochemical networks.
Biotechnol Genet Eng Rev. 2020 Apr;36(1):32-55. doi: 10.1080/02648725.2020.1847440. Epub 2020 Dec 9.
8
An ensemble of mathematical models showing diauxic growth behaviour.
BMC Syst Biol. 2018 Sep 21;12(1):82. doi: 10.1186/s12918-018-0604-8.
9
A survey on methods for modeling and analyzing integrated biological networks.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jul-Aug;8(4):943-58. doi: 10.1109/TCBB.2010.117.
10
Searching for principles of microbial physiology.
FEMS Microbiol Rev. 2020 Nov 24;44(6):821-844. doi: 10.1093/femsre/fuaa034.

引用本文的文献

1
Bioactive exometabolites drive maintenance competition in simple bacterial communities.
mSystems. 2024 Apr 16;9(4):e0006424. doi: 10.1128/msystems.00064-24. Epub 2024 Mar 12.
2
Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model.
Nat Microbiol. 2024 Feb;9(2):421-433. doi: 10.1038/s41564-023-01582-w. Epub 2024 Feb 5.
3
A coarse-grained resource allocation model of carbon and nitrogen metabolism in unicellular microbes.
J R Soc Interface. 2023 Sep;20(206):20230206. doi: 10.1098/rsif.2023.0206. Epub 2023 Sep 27.
5
Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective.
J Adv Res. 2023 Jul;49:1-14. doi: 10.1016/j.jare.2022.09.003. Epub 2022 Sep 12.
6
Complex and unexpected outcomes of antibiotic therapy against a polymicrobial infection.
ISME J. 2022 Sep;16(9):2065-2075. doi: 10.1038/s41396-022-01252-5. Epub 2022 May 21.
7
Elementary vectors and autocatalytic sets for resource allocation in next-generation models of cellular growth.
PLoS Comput Biol. 2022 Feb 1;18(2):e1009843. doi: 10.1371/journal.pcbi.1009843. eCollection 2022 Feb.
8
Dimensionless parameter predicts bacterial prodrug success.
Mol Syst Biol. 2022 Jan;18(1):e10495. doi: 10.15252/msb.202110495.
9
Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges.
Microorganisms. 2021 Nov 14;9(11):2352. doi: 10.3390/microorganisms9112352.
10
The effect of natural selection on the propagation of protein expression noise to bacterial growth.
PLoS Comput Biol. 2021 Jul 19;17(7):e1009208. doi: 10.1371/journal.pcbi.1009208. eCollection 2021 Jul.

本文引用的文献

1
Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli.
Curr Biol. 2017 May 8;27(9):1278-1287. doi: 10.1016/j.cub.2017.03.022. Epub 2017 Apr 13.
2
Constraint-based stoichiometric modelling from single organisms to microbial communities.
J R Soc Interface. 2016 Nov;13(124). doi: 10.1098/rsif.2016.0627.
3
Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery.
Trends Microbiol. 2017 Jun;25(6):480-493. doi: 10.1016/j.tim.2016.12.009. Epub 2017 Jan 16.
4
Rethinking cell growth models.
FEMS Yeast Res. 2016 Nov;16(7). doi: 10.1093/femsyr/fow081. Epub 2016 Sep 19.
5
Constrained Allocation Flux Balance Analysis.
PLoS Comput Biol. 2016 Jun 29;12(6):e1004913. doi: 10.1371/journal.pcbi.1004913. eCollection 2016 Jun.
7
Necessary and sufficient conditions for protocell growth.
J Math Biol. 2016 Dec;73(6-7):1627-1664. doi: 10.1007/s00285-016-0998-0. Epub 2016 Apr 18.
8
Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.
PLoS Comput Biol. 2016 Mar 9;12(3):e1004802. doi: 10.1371/journal.pcbi.1004802. eCollection 2016 Mar.
10
Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli.
Mol Microbiol. 2016 May;100(3):472-85. doi: 10.1111/mmi.13329. Epub 2016 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验