Inria, Grenoble Rhône-Alpes Research Centre, Montbonnot, Saint Ismier Cedex, France.
Inria, Grenoble Rhône-Alpes Research Centre, Montbonnot, Saint Ismier Cedex, France; Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d'Hères, France.
Trends Microbiol. 2017 Jun;25(6):480-493. doi: 10.1016/j.tim.2016.12.009. Epub 2017 Jan 16.
Bacteria have evolved complex regulatory networks to control the activity of transcription and translation, and thus the growth rate, over a range of environmental conditions. Reengineering RNA polymerase and ribosomes allows modifying naturally evolved regulatory networks and thereby profoundly reorganizing the manner in which bacteria allocate resources to different cellular functions. This opens new opportunities for our fundamental understanding of microbial physiology and for a variety of applications. Recent breakthroughs in genome engineering and the miniaturization and automation of culturing methods have offered new perspectives for the reengineering of the transcription and translation machinery in bacteria as well as the development of novel in vitro and in vivo gene expression systems. We review different examples from the unifying perspective of resource reallocation, and discuss the impact of these approaches for microbial systems biology and biotechnological applications.
细菌已经进化出复杂的调控网络,以在一系列环境条件下控制转录和翻译的活性,从而控制生长速度。对 RNA 聚合酶和核糖体进行工程改造,可以修改自然进化的调控网络,从而彻底改变细菌分配资源用于不同细胞功能的方式。这为我们深入了解微生物生理学以及各种应用提供了新的机会。最近在基因组工程方面的突破以及培养方法的小型化和自动化,为细菌中转录和翻译机制的重新设计以及新型体外和体内基因表达系统的开发提供了新的视角。我们从资源再分配的统一角度回顾了不同的例子,并讨论了这些方法对微生物系统生物学和生物技术应用的影响。