National Laboratory of Solid State Microstructures/School of Electronic Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University , 210093 Nanjing, People's Republic of China.
Key Laboratory for the Physics and Chemistry of Nanodevices/Department of Electronics, Peking University , 100871 Beijing, People's Republic of China.
Nano Lett. 2017 Dec 13;17(12):7638-7646. doi: 10.1021/acs.nanolett.7b03658. Epub 2017 Dec 4.
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
线形状工程是为通过自组装工艺生长的一维硅纳米线(SiNWs)赋予额外拉伸性的关键策略。在这里,我们借助于铟液滴将平面 SiNW 进行确定性的线形状编程,使其成为极其可拉伸的弹簧或任意 2D 图案,这些铟液滴吸收非晶态 Si 前体薄膜以沿着编程的阶跃边缘产生超长的单晶 c-SiNW。已经建立了可靠且忠实的单步生长,即在具有不同局部曲率的转弯轨道上生长 c-SiNW,而高分辨率透射电子显微镜分析表明,线形状工程 SiNW 弹簧具有高质量的单晶样结晶度。令人兴奋的是,原位扫描电子显微镜拉伸和电流-电压特性也表明,即使在超过 200%的大拉伸下,SiNW 弹簧也能实现超弹性和稳健的电传输。我们认为,这种高度可靠的线形状编程方法有望将成熟的 c-Si 技术扩展到新一代高性能生物友好和可拉伸电子产品的开发中。