文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同 pO 水平下的二价铁氧化:Fe(III)/Al(III)氧化物矿物和有机物的影响。

Ferrous Iron Oxidation under Varying pO Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

机构信息

Department of Crop and Soil Sciences, The University of Georgia , Athens, Georgia 30602, United States.

出版信息

Environ Sci Technol. 2018 Jan 16;52(2):597-606. doi: 10.1021/acs.est.7b05102. Epub 2017 Dec 21.


DOI:10.1021/acs.est.7b05102
PMID:29192502
Abstract

Abiotic Fe(II) oxidation by O commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-AlO) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO at pH 6. We tracked Fe dynamics by adding Fe(II) to Fe-labeled goethite and γ-AlO and characterized the resulting solids using Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) alone, both goethite and γ-AlO surfaces increased Fe(II) oxidation rates regardless of pO levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-AlO favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO, and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-AlO, but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

摘要

在土壤和沉积物中,O 通常会在矿物吸附剂和有机物 (OM) 的存在下促进非生物 Fe(II) 氧化;然而,这个三元系统很少被研究过。因此,我们研究了矿物表面(针铁矿和γ-AlO)和有机物[苏万尼河富里酸 (SRFA)]对 Fe(II) 氧化速率的影响,以及在 pH 值为 6 时 21%和 1% pO 下形成的 Fe(III)(氧氢)氧化物。我们通过向 Fe 标记的针铁矿和γ-AlO 中添加 Fe(II) 来跟踪 Fe 动力学,并使用 Fe Mössbauer 光谱法对生成的固体进行了表征。我们发现,在低 pO 下,Fe(II) 的氧化速度较慢,生成的 Fe(III) 相结晶度较高。与单独氧化 Fe(II)相比,无论 pO 水平如何,针铁矿和γ-AlO 表面都能提高 Fe(II)的氧化速率,其中针铁矿是更强的催化剂。针铁矿表面促进了结晶针铁矿的形成,而γ-AlO 则有利于纳米/小颗粒或无序针铁矿和一些纤铁矿的形成;单独氧化 Fe(II)有利于纤铁矿的形成。除了在 21% pO 下的无矿物体系外,SRFA 降低了所有处理中的氧化速率,并且 SRFA 降低了 Fe(III) 相结晶度,在没有矿物吸附剂的情况下有利于低结晶水铁矿的形成,在存在γ-AlO 的情况下有利于低结晶纤铁矿的形成,但当存在针铁矿时,有利于结晶针铁矿或水铁矿的形成。这项工作强调了氧化速率、矿物表面类型和 OM 控制 Fe(III)沉淀组成。

相似文献

[1]
Ferrous Iron Oxidation under Varying pO Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

Environ Sci Technol. 2017-12-21

[2]
Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.

Environ Sci Technol. 2018-10-16

[3]
Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter.

Environ Sci Technol. 2023-7-25

[4]
Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

Environ Sci Technol. 2017-6-7

[5]
A New Approach for Investigating Iron Mineral Transformations in Soils and Sediments Using Fe-Labeled Minerals and Fe Mössbauer Spectroscopy.

Environ Sci Technol. 2023-7-11

[6]
Competing Fe (II)-induced mineralization pathways of ferrihydrite.

Environ Sci Technol. 2005-9-15

[7]
Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.

Environ Pollut. 2019-8-26

[8]
Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes.

Environ Sci Technol. 2018-10-2

[9]
Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.

Environ Sci Technol. 2017-7-26

[10]
Contact with soil impacts ferrihydrite and lepidocrocite transformations during redox cycling in a paddy soil.

Environ Sci Process Impacts. 2023-12-13

引用本文的文献

[1]
Soil Carbon Sequestration: Role of Fe Oxides and Polyphenol Oxidase Across Temperature and Cultivation Systems.

Plants (Basel). 2025-3-15

[2]
Duration of O Exposure Determines Dominance of Fe vs CH Production in Tropical Forest Soils.

Environ Sci Technol. 2025-3-11

[3]
Effects of Stockpiling on Topsoil Biogeochemistry for Semiarid Mine Reclamation.

Min Metall Explor. 2025

[4]
A Comprehensive Study of Synthesis and Analysis of Anisotropic Iron Oxide and Oxyhydroxide Nanoparticles.

Nanomaterials (Basel). 2022-12-5

[5]
Seasonal Fluctuations in Iron Cycling in Thawing Permafrost Peatlands.

Environ Sci Technol. 2022-4-5

[6]
The Structure of Natural Biogenic Iron (Oxyhydr)oxides Formed in Circumneutral pH Environments.

Geochim Cosmochim Acta. 2021-9-1

[7]
Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals During Microbial Dissimilatory Iron Reduction: A Review.

Rev Environ Contam Toxicol. 2021

[8]
Iron-mediated organic matter decomposition in humid soils can counteract protection.

Nat Commun. 2020-5-7

[9]
Transient O pulses direct Fe crystallinity and Fe(III)-reducer gene expression within a soil microbiome.

Microbiome. 2018-10-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索