Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.
Physiol Meas. 2018 Jan 30;39(1):01NT01. doi: 10.1088/1361-6579/aa9eb4.
The aim of the study was to examine the pros and cons of different types of functional EIT (fEIT) to quantify tidal ventilation distribution in a clinical setting.
fEIT images were calculated with (1) standard deviation of pixel time curve, (2) regression coefficients of global and local impedance time curves, or (3) mean tidal variations. To characterize temporal heterogeneity of tidal ventilation distribution, another fEIT image of pixel inspiration times is also proposed.
fEIT-regression is very robust to signals with different phase information. When the respiratory signal should be distinguished from the heart-beat related signal, or during high-frequency oscillatory ventilation, fEIT-regression is superior to other types. fEIT-tidal variation is the most stable image type regarding the baseline shift. We recommend using this type of fEIT image for preliminary evaluation of the acquired EIT data. However, all these fEITs would be misleading in their assessment of ventilation distribution in the presence of temporal heterogeneity.
The analysis software provided by the currently available commercial EIT equipment only offers either fEIT of standard deviation or tidal variation. Considering the pros and cons of each fEIT type, we recommend embedding more types into the analysis software to allow the physicians dealing with more complex clinical applications with on-line EIT measurements.
本研究旨在探讨不同类型功能电刺激成像(fEIT)在临床环境下量化潮气量分布的优缺点。
使用(1)像素时间曲线标准差、(2)全局和局部阻抗时间曲线回归系数或(3)平均潮气量变化来计算 fEIT 图像。为了描述潮气量分布的时间异质性,还提出了一种像素吸气时间的 fEIT 图像。
fEIT 回归对具有不同相位信息的信号非常稳健。当需要区分呼吸信号和与心跳相关的信号时,或者在高频振荡通气期间,fEIT 回归优于其他类型。fEIT 潮气量变化是关于基线偏移最稳定的图像类型。我们建议使用这种类型的 fEIT 图像对获得的 EIT 数据进行初步评估。然而,在存在时间异质性的情况下,所有这些 fEIT 图像都会对通气分布的评估产生误导。
目前可用的商业 EIT 设备提供的分析软件仅提供标准偏差或潮气量变化的 fEIT。考虑到每种 fEIT 类型的优缺点,我们建议将更多类型嵌入到分析软件中,以便处理更复杂的临床应用的医生可以进行在线 EIT 测量。