Suppr超能文献

心力衰竭中的机器学习:准备好迎接黄金时代。

Machine learning in heart failure: ready for prime time.

作者信息

Awan Saqib Ejaz, Sohel Ferdous, Sanfilippo Frank Mario, Bennamoun Mohammed, Dwivedi Girish

机构信息

School of Computer Science and Software Engineering, The University of Western Australia.

School of Engineering and Information technology, Murdoch University.

出版信息

Curr Opin Cardiol. 2018 Mar;33(2):190-195. doi: 10.1097/HCO.0000000000000491.

Abstract

PURPOSE OF REVIEW

The aim of this review is to present an up-to-date overview of the application of machine learning methods in heart failure including diagnosis, classification, readmissions and medication adherence.

RECENT FINDINGS

Recent studies have shown that the application of machine learning techniques may have the potential to improve heart failure outcomes and management, including cost savings by improving existing diagnostic and treatment support systems. Recently developed deep learning methods are expected to yield even better performance than traditional machine learning techniques in performing complex tasks by learning the intricate patterns hidden in big medical data.

SUMMARY

The review summarizes the recent developments in the application of machine and deep learning methods in heart failure management.

摘要

综述目的

本综述旨在对机器学习方法在心力衰竭中的应用进行最新概述,包括诊断、分类、再入院和药物依从性。

最新发现

近期研究表明,机器学习技术的应用可能有潜力改善心力衰竭的治疗结果和管理,包括通过改进现有的诊断和治疗支持系统来节省成本。预计最近开发的深度学习方法在执行复杂任务时,通过学习隐藏在大量医学数据中的复杂模式,将比传统机器学习技术产生更好的性能。

总结

本综述总结了机器学习和深度学习方法在心力衰竭管理应用中的最新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验