Suppr超能文献

探索机器学习在儿童哮喘管理中的应用:范围综述。

Exploring Machine Learning Applications in Pediatric Asthma Management: Scoping Review.

作者信息

Ojha Tanvi, Patel Atushi, Sivapragasam Krishihan, Sharma Radha, Vosoughi Tina, Skidmore Becky, Pinto Andrew D, Hosseini Banafshe

机构信息

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

JMIR AI. 2024 Aug 27;3:e57983. doi: 10.2196/57983.

Abstract

BACKGROUND

The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel approach in pediatric health care.

OBJECTIVE

This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications, and predictive performances.

METHODS

We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.

RESULTS

From 1231 initial articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common. Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and identifying potential risk factors. For predicting exacerbations, recurrent neural networks and XGBoost showed high performance, with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity and lung function, random forests achieved an AUROC of 0.88. Sound-based studies distinguished wheezing from nonwheezing and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues, sample size constraints, and interpretability concerns.

CONCLUSIONS

This review highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model interpretability to optimize ML utility in clinical settings for pediatric asthma management.

摘要

背景

机器学习(ML)在预测儿童哮喘相关结局方面的整合为儿科医疗保健提供了一种新方法。

目的

本综述旨在分析2019年以来发表的研究,重点关注ML算法、其应用及预测性能。

方法

我们检索了Ovid MEDLINE ALL、Ovid上的Embase、Cochrane图书馆(Wiley)、CINAHL(EBSCO)和Web of Science(核心合集)。检索涵盖2019年1月1日至2023年7月18日期间。纳入了应用ML模型预测18岁以下儿童哮喘相关结局的研究。Covidence用于文献管理,使用预测模型偏倚风险评估工具评估偏倚风险。

结果

从1231篇初始文章中,15篇符合我们的纳入标准。样本量从74例至87413例患者不等。大多数研究使用了多种ML技术,其中逻辑回归(n = 7,47%)和随机森林(n = 6,40%)最为常见。关键结局包括预测哮喘急性加重、对哮喘表型进行分类、预测哮喘诊断以及识别潜在危险因素。对于预测急性加重,循环神经网络和XGBoost表现出高性能,XGBoost的受试者工作特征曲线下面积(AUROC)达到0.76。在对哮喘表型进行分类时,支持向量机非常有效,AUROC为0.79。对于诊断预测,人工神经网络优于逻辑回归,AUROC为0.63。为识别侧重于症状严重程度和肺功能的危险因素,随机森林的AUROC为0.88。基于声音的研究区分了哮鸣音与非哮鸣音以及哮喘咳嗽与正常咳嗽。偏倚风险评估显示,大多数研究(n = 8,53%)表现出低至中度风险,确保了对研究结果有合理程度的信心。各研究的常见局限性包括数据质量问题、样本量限制和可解释性问题。

结论

本综述强调了ML在预测儿科哮喘结局方面的多种应用,每种模型都有独特的优势和挑战。未来的研究应解决数据质量问题、增加样本量并提高模型的可解释性,以优化ML在儿科哮喘管理临床环境中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0664/11387921/dd2da65005ea/ai_v3i1e57983_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验