Suppr超能文献

通过二糖转运和磷酸解的联合工程改造提高酿酒酵母利用蔗糖发酵产 ATP 的产量。

Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae.

机构信息

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP 13083-862, Brazil; Department of Chemical Engineering, University of São Paulo, Avenida Professor Lineu Prestes, 580 - Bloco 20, São Paulo, SP 05424-970, Brazil.

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

Metab Eng. 2018 Jan;45:121-133. doi: 10.1016/j.ymben.2017.11.012. Epub 2017 Dec 2.

Abstract

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h (LmSPase) and 0.06 ± 0.01h (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h and 0.08 ± 0.00h, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.

摘要

厌氧工业发酵过程不需要通气和强化混合,伴随而来的节省成本有利于化学品和燃料的生产。然而,发酵途径的自由能节约通常不足以生产和出口所需的化合物和/或用于细胞生长和维持。为了提高工业相关二糖蔗糖在酿酒酵母中的发酵自由能节约,我们首先用来自肠膜明串珠菌(LmSPase)的细胞内蔗糖磷酸化酶替代了天然酵母α-葡糖苷酶。随后,我们用来自菜豆的假定蔗糖促进剂(PvSUF1)替代了天然质子偶联蔗糖摄取系统。所得菌株在蔗糖上以 0.09±0.02h(LmSPase)和 0.06±0.01h(PvSUF1,LmSPase)的特定生长速率进行厌氧生长。酵母 PGM2 基因(编码磷酸葡糖变位酶)的过表达分别将这些菌株在蔗糖上的厌氧生长速率提高到 0.23±0.01h 和 0.08±0.00h。在厌氧蔗糖限制恒化器培养物中测定生物量产率,用于评估工程菌株的自由能节约。用磷酸化酶替代细胞内水解酶可使蔗糖上的生物量产率提高 31%。进一步用 PvSUF1 替代天然质子偶联蔗糖摄取系统可使厌氧生物量产率再提高 8%,从而使总提高 41%。通过实验证明了二糖摄取和裂解的联合工程的能量优势,这一研究代表了朝着目前代谢途径不能节约足够自由能的化合物的厌氧生产迈出的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验