Turner Sara, Streeter Kristi A, Greer John, Mitchell Gordon S, Fuller David D
University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Dr, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States.
Department of Physiology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
Respir Physiol Neurobiol. 2018 Oct;256:4-14. doi: 10.1016/j.resp.2017.11.008. Epub 2017 Nov 29.
Hypoxia elicits complex cell signaling mechanisms in the respiratory control system that can produce long-lasting changes in respiratory motor output. In this article, we review experimental approaches used to elucidate signaling pathways associated with hypoxia, and summarize current hypotheses regarding the intracellular signaling pathways evoked by intermittent exposure to hypoxia. We review data showing that pharmacological treatments can enhance neuroplastic responses to hypoxia. Original data are included to show that pharmacological modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function can reveal a respiratory neuroplastic response to a single, brief hypoxic exposure in anesthetized mice. Coupling pharmacologic treatments with therapeutic hypoxia paradigms may have rehabilitative value following neurologic injury or during neuromuscular disease. Depending on prevailing conditions, pharmacologic treatments can enable hypoxia-induced expression of neuroplasticity and increased respiratory motor output, or potentially could synergistically interact with hypoxia to more robustly increase motor output.
缺氧会在呼吸控制系统中引发复杂的细胞信号传导机制,从而导致呼吸运动输出产生持久变化。在本文中,我们回顾了用于阐明与缺氧相关信号通路的实验方法,并总结了目前关于间歇性缺氧诱发的细胞内信号通路的假说。我们回顾了表明药物治疗可增强对缺氧的神经可塑性反应的数据。文中包含的原始数据表明,对α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)功能进行药物调节,可揭示麻醉小鼠对单次短暂缺氧暴露的呼吸神经可塑性反应。将药物治疗与治疗性缺氧模式相结合,可能对神经损伤后或神经肌肉疾病期间具有康复价值。根据具体情况,药物治疗可促进缺氧诱导的神经可塑性表达和增加呼吸运动输出,或者可能与缺氧协同作用以更有力地增加运动输出。