Suppr超能文献

利用印度人群手部和腕部 X 光片的放射测角术和纹理分析进行骨质疏松症的早期诊断。

Early diagnosis of osteoporosis using radiogrammetry and texture analysis from hand and wrist radiographs in Indian population.

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India.

Department of Orthopedics, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India.

出版信息

Osteoporos Int. 2018 Mar;29(3):665-673. doi: 10.1007/s00198-017-4328-1. Epub 2017 Dec 3.

Abstract

UNLABELLED

We propose an automated low cost tool for early diagnosis of onset of osteoporosis using cortical radiogrammetry and cancellous texture analysis from hand and wrist radiographs. The trained classifier model gives a good performance accuracy in classifying between healthy and low bone mass subjects.

INTRODUCTION

We propose a low cost automated diagnostic tool for early diagnosis of reduction in bone mass using cortical radiogrammetry and cancellous texture analysis of hand and wrist radiographs. Reduction in bone mass could lead to osteoporosis, a disease observed to be increasingly occurring at a younger age in recent times. Dual X-ray absorptiometry (DXA), currently used in clinical practice, is expensive and available only in urban areas in India. Therefore, there is a need to develop a low cost diagnostic tool in order to facilitate large-scale screening of people for early diagnosis of osteoporosis at primary health centers.

METHODS

Cortical radiogrammetry from third metacarpal bone shaft and cancellous texture analysis from distal radius are used to detect low bone mass. Cortical bone indices and cancellous features using Gray Level Run Length Matrices and Laws' masks are extracted. A neural network classifier is trained using these features to classify healthy subjects and subjects having low bone mass.

RESULTS

In our pilot study, the proposed segmentation method shows 89.9 and 93.5% accuracy in detecting third metacarpal bone shaft and distal radius ROI, respectively. The trained classifier shows training accuracy of 94.3% and test accuracy of 88.5%.

CONCLUSION

An automated diagnostic technique for early diagnosis of onset of osteoporosis is developed using cortical radiogrammetric measurements and cancellous texture analysis of hand and wrist radiographs. The work shows that a combination of cortical and cancellous features improves the diagnostic ability and is a promising low cost tool for early diagnosis of increased risk of osteoporosis.

摘要

目的:我们提出了一种使用手部和腕部 X 射线的皮质骨放射测量法和松质骨纹理分析来自动诊断骨质疏松症发病的低成本工具。训练有素的分类器模型在区分健康和低骨量受试者方面具有良好的性能准确性。

引言:我们提出了一种低成本自动化诊断工具,用于通过手部和腕部 X 射线的皮质骨放射测量法和松质骨纹理分析来早期诊断骨量减少。骨量减少可能导致骨质疏松症,近年来,这种疾病在年轻人中越来越常见。目前在临床实践中使用的双能 X 射线吸收法(DXA)价格昂贵,而且仅在印度的城市地区提供。因此,需要开发一种低成本的诊断工具,以便在初级保健中心为人们进行大规模筛查,以便早期诊断骨质疏松症。

方法:使用第三掌骨干的皮质骨放射测量法和桡骨远端的松质骨纹理分析来检测低骨量。提取皮质骨指数和使用灰度运行长度矩阵和 Laws 掩模的松质特征。使用这些特征训练神经网络分类器来对健康受试者和低骨量受试者进行分类。

结果:在我们的初步研究中,所提出的分割方法分别在检测第三掌骨干和桡骨远端 ROI 时显示了 89.9%和 93.5%的准确率。训练有素的分类器显示出 94.3%的训练准确性和 88.5%的测试准确性。

结论:使用手部和腕部 X 射线的皮质骨放射测量法和松质骨纹理分析开发了一种用于早期诊断骨质疏松症发病的自动化诊断技术。研究结果表明,皮质骨和松质骨特征的组合提高了诊断能力,是一种有前途的低成本工具,可用于早期诊断骨质疏松症风险增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验