Department of Orthopaedic Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan.
Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, 1-2-1, Asahi-machi, Takamatsu, Kagawa 760-8557, Japan.
Biomolecules. 2020 Nov 10;10(11):1534. doi: 10.3390/biom10111534.
This study considers the use of deep learning to diagnose osteoporosis from hip radiographs, and whether adding clinical data improves diagnostic performance over the image mode alone. For objective labeling, we collected a dataset containing 1131 images from patients who underwent both skeletal bone mineral density measurement and hip radiography at a single general hospital between 2014 and 2019. Osteoporosis was assessed from the hip radiographs using five convolutional neural network (CNN) models. We also investigated ensemble models with clinical covariates added to each CNN. The accuracy, precision, recall, specificity, negative predictive value (npv), F1 score, and area under the curve (AUC) score were calculated for each network. In the evaluation of the five CNN models using only hip radiographs, GoogleNet and EfficientNet b3 exhibited the best accuracy, precision, and specificity. Among the five ensemble models, EfficientNet b3 exhibited the best accuracy, recall, npv, F1 score, and AUC score when patient variables were included. The CNN models diagnosed osteoporosis from hip radiographs with high accuracy, and their performance improved further with the addition of clinical covariates from patient records.
本研究探讨了使用深度学习从髋关节 X 光片中诊断骨质疏松症的方法,以及在仅使用图像模式的基础上添加临床数据是否能提高诊断性能。为了进行客观标记,我们收集了一个数据集,其中包含了 2014 年至 2019 年间在一家综合医院同时进行骨骼骨密度测量和髋关节 X 光检查的 1131 名患者的图像。使用五个卷积神经网络 (CNN) 模型从髋关节 X 光片中评估骨质疏松症。我们还研究了将临床协变量添加到每个 CNN 的集成模型。计算了每个网络的准确性、精度、召回率、特异性、阴性预测值 (npv)、F1 分数和曲线下面积 (AUC) 分数。在仅使用髋关节 X 光片评估的五个 CNN 模型中,GoogleNet 和 EfficientNet b3 的准确性、精度和特异性最佳。在五个集成模型中,当包含患者变量时,EfficientNet b3 的准确性、召回率、npv、F1 分数和 AUC 分数最佳。CNN 模型从髋关节 X 光片中诊断骨质疏松症的准确性很高,并且通过添加来自患者记录的临床协变量,其性能进一步提高。