Holmquist G P, Dancis B
Proc Natl Acad Sci U S A. 1979 Sep;76(9):4566-70. doi: 10.1073/pnas.76.9.4566.
Robertsonian rearrangements demonstrate one-break chromosome rearrangement and the reversible appearance and disappearance of telomeres and centromeres. Such events are quite discordant with classical cytogenetic theories, which assume all chromosome rearrangements to require at least two breaks and consider centromeres and telomeres as immutable structures rather than structures determined by mutable DNA sequences. Cytogenetic data from spontaneous and induced telomere-telomere fusions in mammals support a molecular model of terminal DNA synthesis in which all telomeres are similar and recombine before replication and subsequent separation. This, along with evidence for a hypothetical DNA sequence, the kinetochore organizer, readily explains latent telomeres, latent centromeres, and reversible (one-break) Robertsonian rearrangements. A second model, involving simply recombination between like satellite DNA sequences on different chromosomes, explains not only how one satellite can simultaneously evolve on different chromosomes, but also why satellite DNA is usually located near centromeres or telomeres and why it maintains a preferred orientation with respect to the centromere.
罗伯逊易位表现出单断点染色体重排以及端粒和着丝粒的可逆出现与消失。此类事件与经典细胞遗传学理论大相径庭,经典理论假定所有染色体重排至少需要两个断点,并将着丝粒和端粒视为不可变结构,而非由可变DNA序列决定的结构。哺乳动物自发和诱导的端粒 - 端粒融合的细胞遗传学数据支持一种末端DNA合成的分子模型,其中所有端粒相似,在复制及随后分离之前发生重组。这一点,连同关于一种假设的DNA序列——动粒组织者的证据,很容易解释潜在端粒、潜在着丝粒以及可逆(单断点)罗伯逊易位。第二种模型,仅涉及不同染色体上相似卫星DNA序列之间的重组,不仅解释了一个卫星如何能在不同染色体上同时进化,还解释了为何卫星DNA通常位于着丝粒或端粒附近,以及为何它相对于着丝粒保持一种偏好的方向。