Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University Olomouc, Olomouc, Czech Republic.
Department of Microbiology, Palacký University Olomouc, Olomouc, Czech Republic.
Nat Nanotechnol. 2018 Jan;13(1):65-71. doi: 10.1038/s41565-017-0013-y. Epub 2017 Dec 4.
Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.
银纳米颗粒已成功应用于各种生物医学和抗菌技术以及日常生活用品中。尽管细菌对抗生素的耐药性在文献中已经被广泛讨论,但对银纳米颗粒可能产生的耐药性尚未得到充分探索。我们报告称,革兰氏阴性菌大肠杆菌 013、铜绿假单胞菌 CCM 3955 和大肠杆菌 CCM 3954 可以在反复暴露于银纳米颗粒后产生耐药性。这种耐药性源于粘性鞭毛蛋白鞭毛的产生,它触发了纳米颗粒的聚集。这种耐药性的产生不需要遗传变化,只需要表型变化即可降低纳米颗粒的胶体稳定性,从而消除其抗菌活性。使用表面活性剂或聚合物对银纳米颗粒进行额外的稳定化并不能克服这种耐药机制。然而,用石榴皮提取物抑制鞭毛蛋白的产生可以强烈抑制这种耐药性。
Nat Nanotechnol. 2017-12-4
Spectrochim Acta A Mol Biomol Spectrosc. 2011-3-23
Phytother Res. 2011-12-15
Int J Mol Sci. 2021-7-4
Prikl Biokhim Mikrobiol. 2013
J Nanobiotechnology. 2012-11-29
Front Cell Infect Microbiol. 2025-8-14
Research (Wash D C). 2025-8-21
Mater Today Bio. 2025-4-30