Suppr超能文献

整合临床和多种组学数据以进行跨人类癌症的预后评估。

Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA.

NSABP Foundation, Pittsburgh, PA, 15212, USA.

出版信息

Sci Rep. 2017 Dec 5;7(1):16954. doi: 10.1038/s41598-017-17031-8.

Abstract

Multiple omic profiles have been generated for many cancer types; however, comprehensive assessment of their prognostic values across cancers is limited. We conducted a pan-cancer prognostic assessment and presented a multi-omic kernel machine learning method to systematically quantify the prognostic values of high-throughput genomic, epigenomic, and transcriptomic profiles individually, integratively, and in combination with clinical factors for 3,382 samples across 14 cancer types. We found that the prognostic performance varied substantially across cancer types. mRNA and miRNA expression profile frequently performed the best, followed by DNA methylation profile. Germline susceptibility variants displayed low prognostic performance consistently across cancer types. The integration of omic profiles with clinical variables can lead to substantially improved prognostic performance over the use of clinical variables alone in half of cancer types examined. Moreover, we showed that the kernel machine learning method consistently outperformed existing prognostic signatures, suggesting that including a large number of omic biomarkers may provide substantial improvement in prognostic assessment. Our study provides a comprehensive portrait of omic architecture for tumor prognosis across cancers, and highlights the prognostic value of genome-wide omic biomarker aggregation, which may facilitate refined prognostic assessment in the era of precision oncology.

摘要

已经为许多癌症类型生成了多种组学图谱;然而,对它们在癌症之间的预后价值的全面评估是有限的。我们进行了泛癌症预后评估,并提出了一种多组学核机器学习方法,用于系统地量化高通量基因组、表观基因组和转录组图谱在 14 种癌症类型的 3382 个样本中的个体、综合和与临床因素相结合的预后价值。我们发现,不同癌症类型之间的预后表现差异很大。mRNA 和 miRNA 表达谱经常表现最好,其次是 DNA 甲基化谱。种系易感性变异在癌症类型之间始终表现出较低的预后性能。将组学图谱与临床变量相结合,可以在一半以上检查的癌症类型中,显著提高预后性能,而不仅仅是使用临床变量。此外,我们表明核机器学习方法始终优于现有的预后特征,这表明包含大量组学生物标志物可能会在预后评估中提供实质性的改善。我们的研究提供了跨癌症的肿瘤预后的组学结构的全面描述,并强调了全基因组组学生物标志物聚集的预后价值,这可能有助于在精准肿瘤学时代进行更精细的预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7e3/5717223/bac4d695c459/41598_2017_17031_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验