Suppr超能文献

杂多钨酸盐对念珠菌属的体外和体内抗真菌活性及作用机制

In vitro and in vivo antifungal activities and mechanism of heteropolytungstates against Candida species.

作者信息

Li Han, Gong Hongwei, Qi Yanfei, Li Juan, Ji Xufeng, Sun Jiaheng, Tian Rui, Bao Hao, Song Xiangfu, Chen Qiang, Liu Guoliang

机构信息

School of Public Health, Jilin University, Changchun, Jilin, 130021, P. R. China.

Department of Infection Control, The First Hospital of Jilin University, Changchun, Jilin, 130021, P. R. China.

出版信息

Sci Rep. 2017 Dec 5;7(1):16942. doi: 10.1038/s41598-017-17239-8.

Abstract

The antifungal activities of heteropolytungstates, α-1,2,3-KH[SiWVO] (SiW-3), K[Ce(SiWO)]·17HO (SiW-5), K[Eu(SiWO)]·25HO (SiW-10), KPVWO (PW-6), α-KPVWO (PW-8), were screened in 29 Candida albicans, 8 Candida glabrata, 3 Candida krusei, 2 Candida parapsilosis, 1 Candida tropicalis, and 1 Cryptococcus neoformans strains using the CLSI M27-A3 method. SiW-5 had the highest efficacy with a minimum inhibitory concentration (MIC) values of <0.2-10.2 μM in vitro. The antifungal mechanism, acute toxicity and in vivo antifungal activity of SiW-5 were then evaluated in C. albicans. The results showed that SiW-5 damaged the fungal cell membrane, reduce the ergosterol content and its main mode of action was through inhibition of ergosterol biosynthesis. Real-time PCR showed that ERG1, ERG7, ERG11 and ERG28 were all significantly upregulated by SiW-5. An acute toxicity study showed the 50% lethal dose (LD) of SiW-5 for ICR mice was 1651.5 mg/kg. And in vivo antifungal studies demonstrated that SiW-5 reduced both the morbidity and fungal burden of mice infected with C. albicans. This study demonstrates that SiW-5 is a potential antifungal candidate against the Candida species.

摘要

采用CLSI M27 - A3方法,对杂多钨酸盐α - 1,2,3 - KH[SiWVO](SiW - 3)、K[Ce(SiWO)]·17H₂O(SiW - 5)、K[Eu(SiWO)]·25H₂O(SiW - 10)、KPVWO(PW - 6)、α - KPVWO(PW - 8)对29株白色念珠菌、8株光滑念珠菌、3株克柔念珠菌、2株近平滑念珠菌、1株热带念珠菌和1株新生隐球菌的抗真菌活性进行了筛选。SiW - 5具有最高的效力,其体外最低抑菌浓度(MIC)值为<0.2 - 10.2 μM。随后在白色念珠菌中评估了SiW - 5的抗真菌机制、急性毒性和体内抗真菌活性。结果表明,SiW - 5破坏了真菌细胞膜,降低了麦角甾醇含量,其主要作用方式是通过抑制麦角甾醇的生物合成。实时PCR显示,ERG1、ERG7、ERG11和ERG28均被SiW - 5显著上调。急性毒性研究表明,SiW - 5对ICR小鼠的半数致死剂量(LD₅₀)为1651.5 mg/kg。体内抗真菌研究表明,SiW - 5降低了感染白色念珠菌小鼠的发病率和真菌负荷。本研究表明,SiW - 5是一种针对念珠菌属的潜在抗真菌候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b925/5717275/b316fc76af04/41598_2017_17239_Fig1_HTML.jpg

相似文献

2
In Vitro Antifungal Activity and Mechanism of AgPWO Composites against Species.
Molecules. 2020 Dec 18;25(24):6012. doi: 10.3390/molecules25246012.
5
Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice.
Antimicrob Agents Chemother. 2005 Jan;49(1):52-6. doi: 10.1128/AAC.49.1.52-56.2005.
6
Fungicidal efficacy of various honeys against fluconazole-resistant Candida species isolated from HIV patients with candidiasis.
J Mycol Med. 2017 Jun;27(2):159-165. doi: 10.1016/j.mycmed.2017.01.004. Epub 2017 Jan 31.
10
Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography.
Chem Biol Drug Des. 2011 Mar;77(3):212-22. doi: 10.1111/j.1747-0285.2010.01072.x. Epub 2011 Jan 19.

引用本文的文献

1
The Contribution of Human Antimicrobial Peptides to Fungi.
Int J Mol Sci. 2025 Mar 11;26(6):2494. doi: 10.3390/ijms26062494.
2
Sanguinarine, Isolated From , Exhibits Potent Antifungal Efficacy Against Through Inhibiting Ergosterol Synthesis.
Front Microbiol. 2022 Jun 15;13:908461. doi: 10.3389/fmicb.2022.908461. eCollection 2022.
6
In Vitro Anti- Activity and Action Mode of Benzoxazole Derivatives.
Molecules. 2021 Aug 18;26(16):5008. doi: 10.3390/molecules26165008.
7
In Vitro Antifungal Activity and Mechanism of AgPWO Composites against Species.
Molecules. 2020 Dec 18;25(24):6012. doi: 10.3390/molecules25246012.
10
Differential Behavior of Non- Species in the Central Nervous System of Immunocompetent and Immunosuppressed Mice.
Front Microbiol. 2019 Jan 8;9:2968. doi: 10.3389/fmicb.2018.02968. eCollection 2018.

本文引用的文献

1
Fungal cell membrane-promising drug target for antifungal therapy.
J Appl Microbiol. 2016 Dec;121(6):1498-1510. doi: 10.1111/jam.13301. Epub 2016 Nov 2.
2
Common invasive fungal diseases: an overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia.
Swiss Med Wkly. 2016 Feb 22;146:w14281. doi: 10.4414/smw.2016.14281. eCollection 2016.
3
The Global Burden of Fungal Diseases.
Infect Dis Clin North Am. 2016 Mar;30(1):1-11. doi: 10.1016/j.idc.2015.10.004. Epub 2015 Dec 29.
4
Coping with stress and the emergence of multidrug resistance in fungi.
PLoS Pathog. 2015 Mar 19;11(3):e1004668. doi: 10.1371/journal.ppat.1004668. eCollection 2015 Mar.
5
Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model.
Chem Biol Interact. 2014 Oct 5;222:87-96. doi: 10.1016/j.cbi.2014.10.012. Epub 2014 Oct 22.
6
Polyoxometalates--potent and selective ecto-nucleotidase inhibitors.
Biochem Pharmacol. 2015 Jan 15;93(2):171-81. doi: 10.1016/j.bcp.2014.11.002. Epub 2014 Nov 13.
7
Broad-spectrum antiviral property of polyoxometalate localized on a cell surface.
ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9785-9. doi: 10.1021/am502193f. Epub 2014 Jun 6.
8
Global trends in the distribution of Candida species causing candidemia.
Clin Microbiol Infect. 2014 Jun;20 Suppl 6:5-10. doi: 10.1111/1469-0691.12539. Epub 2014 Mar 6.
9
Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis.
Clin Ther. 2014 Feb 1;36(2):292-306.e1. doi: 10.1016/j.clinthera.2013.11.010. Epub 2014 Jan 17.
10
Engineering polyoxometalates with emergent properties.
Chem Soc Rev. 2012 Nov 21;41(22):7403-30. doi: 10.1039/c2cs35190k. Epub 2012 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验