Suppr超能文献

通过相反的 APPL1 机制将 GPCR 信号转导和分拣整合到早期内体中。

Integration of GPCR Signaling and Sorting from Very Early Endosomes via Opposing APPL1 Mechanisms.

机构信息

Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.

Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

出版信息

Cell Rep. 2017 Dec 5;21(10):2855-2867. doi: 10.1016/j.celrep.2017.11.023.

Abstract

Endocytic trafficking is a critical mechanism for cells to decode complex signaling pathways, including those activated by G-protein-coupled receptors (GPCRs). Heterogeneity in the endosomal network enables GPCR activity to be spatially restricted between early endosomes (EEs) and the recently discovered endosomal compartment, the very early endosome (VEE). However, the molecular machinery driving GPCR activity from the VEE is unknown. Using luteinizing hormone receptor (LHR) as a prototype GPCR for this compartment, along with additional VEE-localized GPCRs, we identify a role for the adaptor protein APPL1 in rapid recycling and endosomal cAMP signaling without impacting the EE-localized β2-adrenergic receptor. LHR recycling is driven by receptor-mediated Gαs/cAMP signaling from the VEE and PKA-dependent phosphorylation of APPL1 at serine 410. Receptor/Gαs endosomal signaling is localized to microdomains of heterogeneous VEE populations and regulated by APPL1 phosphorylation. Our study uncovers a highly integrated inter-endosomal communication system enabling cells to tightly regulate spatially encoded signaling.

摘要

内吞运输是细胞解码复杂信号通路的关键机制,包括那些被 G 蛋白偶联受体(GPCR)激活的信号通路。内体网络的异质性使得 GPCR 活性在早期内体(EEs)和最近发现的内体隔室——非常早期内体(VEE)之间受到空间限制。然而,驱动 VEE 中 GPCR 活性的分子机制尚不清楚。我们以黄体生成素受体(LHR)作为该隔室的原型 GPCR,以及其他位于 VEE 的 GPCR,鉴定了衔接蛋白 APPL1 在快速再循环和内体 cAMP 信号中的作用,而不影响 EE 定位的β2-肾上腺素能受体。LHR 的再循环是由 VEE 中受体介导的 Gαs/cAMP 信号和 APPL1 丝氨酸 410 的 PKA 依赖性磷酸化驱动的。受体/Gαs 内体信号定位于异质 VEE 群体的微域中,并受 APPL1 磷酸化的调节。我们的研究揭示了一个高度集成的内体间通讯系统,使细胞能够紧密调节空间编码信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c547/5732320/74516f314b28/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验