Suppr超能文献

一种基于遗传力的高维数据岭罚主成分分析方法。

A ridge penalized principal-components approach based on heritability for high-dimensional data.

作者信息

Wang Yuanjia, Fang Yixin, Jin Man

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.

出版信息

Hum Hered. 2007;64(3):182-91. doi: 10.1159/000102991. Epub 2007 May 25.

Abstract

OBJECTIVE

To develop a ridge penalized principal-components approach based on heritability that can be applied to high-dimensional family data.

METHODS

The first principal component of heritability for a trait constellation is defined as a linear combination of traits that maximizes the heritability, which is equivalent to maximize the family-specific variation relative to the subject-specific variation. To analyze high-dimensional data and prevent overfitting, we propose a penalized principal-components approach based on heritability by adding a ridge penalty to the subject-specific variation. We choose the optimal regularization parameter by cross-validation.

RESULTS

The principal-components approach based on heritability with and without ridge penalty was compared to the usual principal-components analysis in four settings. The penalized principal-components of heritability analysis had substantially larger coefficients for the traits with genetic effect than for the traits with no genetic effect, while the non-regularized analysis failed to identify the genetic traits. In addition, linkage analysis on the combined traits showed that the power of the proposed methods was higher than the usual principal-components analysis and the non-regularized principal-components of heritability analysis.

CONCLUSIONS

The penalized principal-components approach based on heritability can effectively handle large number of traits with family structure and provide power gain for linkage analysis. The cross-validation procedure performs well in choosing optimal magnitude of penalty.

摘要

目的

开发一种基于遗传力的岭惩罚主成分方法,该方法可应用于高维家庭数据。

方法

将性状星座的遗传力的第一主成分定义为使遗传力最大化的性状线性组合,这等同于相对于个体特异性变异最大化家庭特异性变异。为了分析高维数据并防止过拟合,我们通过对个体特异性变异添加岭惩罚,提出了一种基于遗传力的惩罚主成分方法。我们通过交叉验证选择最优正则化参数。

结果

在四种情况下,将基于遗传力有无岭惩罚的主成分方法与常规主成分分析进行了比较。遗传力分析的惩罚主成分对具有遗传效应的性状的系数比对无遗传效应的性状的系数大得多,而非正则化分析未能识别出遗传性状。此外,对组合性状的连锁分析表明,所提出方法的功效高于常规主成分分析和遗传力分析的非正则化主成分。

结论

基于遗传力的惩罚主成分方法可以有效地处理具有家庭结构的大量性状,并为连锁分析提供功效增益。交叉验证程序在选择最优惩罚幅度方面表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验