Suppr超能文献

使用ENIGMA分析流程对静息态功能磁共振成像数据的遗传力估计。

Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.

作者信息

Adhikari Bhim M, Jahanshad Neda, Shukla Dinesh, Glahn David C, Blangero John, Reynolds Richard C, Cox Robert W, Fieremans Els, Veraart Jelle, Novikov Dmitry S, Nichols Thomas E, Hong L Elliot, Thompson Paul M, Kochunov Peter

机构信息

Maryland Psychiatry Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,

出版信息

Pac Symp Biocomput. 2018;23:307-318.

Abstract

Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.

摘要

诸如通过元分析增强神经影像遗传学联盟(ENIGMA)这样的大数据计划,将全球独立研究收集的数据结合起来,以实现对效应大小更具普遍性的估计以及更可靠和可重复的结果。此类工作需要统一的图像分析方案,以便一致地提取表型。由于采集方案和扫描仪平台的广泛变异性,这种统一对于静息态功能磁共振成像(rsfMRI)尤其具有挑战性;这导致了不同站点在质量、分辨率和时间信噪比(tSNR)方面的差异。有效的统一应该为不同质量的数据提供最佳测量方法。我们开发了一个多站点rsfMRI分析流程,以使世界各地的研究团队能够以统一的方式处理rsfMRI扫描,提取一致且定量的连通性测量值,并进行协调的统计测试。我们使用基于无模型马尔琴科 - 帕斯图尔主成分分析(PCA)去噪的单模态ENIGMA rsfMRI预处理流程,来验证和复制静息态网络遗传力估计值。我们分析了两个独立队列,GOBS(脑结构遗传学)和HCP(人类连接组计划),它们分别使用传统的和面向连接组学的功能磁共振成像协议收集数据。我们使用基于种子点的连通性和双回归方法,表明rsfMRI信号在二十项主要功能网络测量中具有一致的遗传性。在两个队列中均观察到遗传力值在20%至40%之间。

相似文献

引用本文的文献

6
Heritability of human "directed" functional connectome.人类“定向”功能连接组的遗传力。
Brain Behav. 2023 May;13(5):e2839. doi: 10.1002/brb3.2839. Epub 2023 Mar 29.

本文引用的文献

1
Denoising of diffusion MRI using random matrix theory.使用随机矩阵理论对扩散磁共振成像进行去噪
Neuroimage. 2016 Nov 15;142:394-406. doi: 10.1016/j.neuroimage.2016.08.016. Epub 2016 Aug 11.
2
Diffusion MRI noise mapping using random matrix theory.使用随机矩阵理论的扩散磁共振成像噪声映射
Magn Reson Med. 2016 Nov;76(5):1582-1593. doi: 10.1002/mrm.26059. Epub 2015 Nov 24.
3
FSL.束流输送系统。
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.
6
Genetic control over the resting brain.对静息态大脑的遗传控制。
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1223-8. doi: 10.1073/pnas.0909969107.
7
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.
9
Mapping the functional connectivity of anterior cingulate cortex.绘制前扣带皮层的功能连接图。
Neuroimage. 2007 Aug 15;37(2):579-88. doi: 10.1016/j.neuroimage.2007.05.019. Epub 2007 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验