Adhikari Bhim M, Jahanshad Neda, Shukla Dinesh, Glahn David C, Blangero John, Reynolds Richard C, Cox Robert W, Fieremans Els, Veraart Jelle, Novikov Dmitry S, Nichols Thomas E, Hong L Elliot, Thompson Paul M, Kochunov Peter
Maryland Psychiatry Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,
Pac Symp Biocomput. 2018;23:307-318.
Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.
诸如通过元分析增强神经影像遗传学联盟(ENIGMA)这样的大数据计划,将全球独立研究收集的数据结合起来,以实现对效应大小更具普遍性的估计以及更可靠和可重复的结果。此类工作需要统一的图像分析方案,以便一致地提取表型。由于采集方案和扫描仪平台的广泛变异性,这种统一对于静息态功能磁共振成像(rsfMRI)尤其具有挑战性;这导致了不同站点在质量、分辨率和时间信噪比(tSNR)方面的差异。有效的统一应该为不同质量的数据提供最佳测量方法。我们开发了一个多站点rsfMRI分析流程,以使世界各地的研究团队能够以统一的方式处理rsfMRI扫描,提取一致且定量的连通性测量值,并进行协调的统计测试。我们使用基于无模型马尔琴科 - 帕斯图尔主成分分析(PCA)去噪的单模态ENIGMA rsfMRI预处理流程,来验证和复制静息态网络遗传力估计值。我们分析了两个独立队列,GOBS(脑结构遗传学)和HCP(人类连接组计划),它们分别使用传统的和面向连接组学的功能磁共振成像协议收集数据。我们使用基于种子点的连通性和双回归方法,表明rsfMRI信号在二十项主要功能网络测量中具有一致的遗传性。在两个队列中均观察到遗传力值在20%至40%之间。