Suppr超能文献

简化、自动化的方法来评估细胞中荧光标记药物的像素强度。

Simplified, automated methods for assessing pixel intensities of fluorescently-tagged drugs in cells.

机构信息

Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America.

National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, United States of America.

出版信息

PLoS One. 2018 Nov 1;13(11):e0206628. doi: 10.1371/journal.pone.0206628. eCollection 2018.

Abstract

Assessing the cytoplasmic uptake of fluorescently-tagged drugs in heterogeneous cell types currently involves time-consuming manual segmentation of confocal microscopy images. We developed a set of methods that incorporate map algebra techniques to facilitate and expedite image segmentation, particularly of the parenchyma of intermediate cells in the stria vascularis of the inner ear. Map algebra is used to apply a convolution kernel to pixel neighborhoods to create a masking image to select pixels in the original image for further operations. Here, we describe the utility of integrated intensity-based, percentile-based, and local autocorrelation-based methods to automate segmentation of images into putative morphological regions for pixel intensity analysis. Integrated intensity-based methods are variants of watershed segmentation tools that determine morphological boundaries from rates of change in integrated pixel intensity. Percentile- and local autocorrelation-based methods evolved out of the process of developing map algebra- and integrated intensity-based tools. We identified several simplifications that are surprisingly effective for image segmentation and pixel intensity analysis. These methods were empirically validated on three levels: first, the algorithms were developed based on iterations of inspected results; second, algorithms were tested for various types of robustness; and third, developed algorithms were validated against results from manually-segmented images. We conclude the key to automated segmentation is supervision of output data.

摘要

评估荧光标记药物在异质细胞类型中的细胞质摄取目前涉及耗时的共聚焦显微镜图像手动分割。我们开发了一套方法,结合地图代数技术来促进和加快图像分割,特别是对内耳血管纹中间细胞的实质进行分割。地图代数用于应用卷积核到像素邻域以创建掩模图像,以便在原始图像中选择像素进行进一步操作。在这里,我们描述了基于积分的、基于百分位的和基于局部自相关的方法的实用性,这些方法用于将图像自动分割成用于像素强度分析的假定形态区域。基于积分的方法是分水岭分割工具的变体,它根据积分像素强度的变化率来确定形态边界。基于百分位和局部自相关的方法是从开发地图代数和基于积分的工具的过程中演变而来的。我们确定了一些非常有效的图像分割和像素强度分析简化方法。这些方法在三个层面上进行了经验验证:首先,根据检查结果的迭代开发算法;其次,测试算法的各种稳健性;最后,开发的算法通过手动分割图像的结果进行验证。我们得出的结论是,自动化分割的关键是对输出数据进行监督。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c51f/6211712/4753b34c4952/pone.0206628.g001.jpg

相似文献

1
Simplified, automated methods for assessing pixel intensities of fluorescently-tagged drugs in cells.
PLoS One. 2018 Nov 1;13(11):e0206628. doi: 10.1371/journal.pone.0206628. eCollection 2018.
2
Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.
J Neurosci Methods. 2018 Feb 1;295:87-103. doi: 10.1016/j.jneumeth.2017.12.002. Epub 2017 Dec 6.
3
A novel multiphoton microscopy images segmentation method based on superpixel and watershed.
J Biophotonics. 2017 Apr;10(4):532-541. doi: 10.1002/jbio.201600007. Epub 2016 Apr 19.
4
A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.
IEEE Trans Image Process. 2010 Sep;19(9):2408-18. doi: 10.1109/TIP.2010.2047168. Epub 2010 Apr 1.
5
[A contour map segmentation for laser scanning confocal microscopic biomedical images].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2001 Dec;18(4):500-3.
7
A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.
Comput Methods Programs Biomed. 2018 Jul;160:11-23. doi: 10.1016/j.cmpb.2018.03.015. Epub 2018 Mar 22.
8
Segmentation and Quantitative Analysis of Apoptosis of Chinese Hamster Ovary Cells from Fluorescence Microscopy Images.
Microsc Microanal. 2017 Jun;23(3):569-583. doi: 10.1017/S1431927617000381. Epub 2017 Apr 3.
9
Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
Cytometry A. 2011 Nov;79(11):933-45. doi: 10.1002/cyto.a.21122. Epub 2011 Oct 14.

引用本文的文献

1
Unilocular adipocyte and lipid tracer for immunofluorescent images.
Sci Rep. 2025 Feb 7;15(1):4643. doi: 10.1038/s41598-024-80613-w.

本文引用的文献

1
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
Bioinformatics. 2017 Aug 1;33(15):2424-2426. doi: 10.1093/bioinformatics/btx180.
2
Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.
Dev Cell. 2016 Jan 25;36(2):225-40. doi: 10.1016/j.devcel.2015.12.028.
3
Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool.
Neuroimage. 2016 Jan 15;125:479-497. doi: 10.1016/j.neuroimage.2015.10.013. Epub 2015 Oct 19.
4
Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity.
Sci Transl Med. 2015 Jul 29;7(298):298ra118. doi: 10.1126/scitranslmed.aac5546.
5
Microscopy image segmentation tool: robust image data analysis.
Rev Sci Instrum. 2014 Mar;85(3):033701. doi: 10.1063/1.4866687.
6
ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.
PLoS Comput Biol. 2012;8(12):e1002780. doi: 10.1371/journal.pcbi.1002780. Epub 2012 Dec 6.
7
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
8
Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells.
Sci Rep. 2011;1:159. doi: 10.1038/srep00159. Epub 2011 Nov 16.
9
On the theory of scales of measurement.
Science. 1946 Jun 7;103(2684):677-80.
10
EBImage--an R package for image processing with applications to cellular phenotypes.
Bioinformatics. 2010 Apr 1;26(7):979-81. doi: 10.1093/bioinformatics/btq046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验