Suppr超能文献

一种用于预测侧向抑制系统模式的图划分方法。

A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS.

作者信息

Rufino Ferreira Ana S, Arcak Murat

机构信息

Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA.

出版信息

SIAM J Appl Dyn Syst. 2013;12(4):2012-2031. doi: 10.1137/130910142. Epub 2013 Dec 17.

Abstract

We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs.

摘要

我们分析细胞网络中的空间模式,其中相邻细胞通过接触信号相互抑制。我们将网络表示为一个图,其中每个顶点代表相同个体细胞的动态,图的边代表细胞间信号传导。为了预测稳态模式,我们找到图顶点的公平划分并将它们分配到不相交的类别中。然后,我们使用单调系统理论的结果来证明存在这样一种结构的模式,即同一类中的所有细胞具有相同的最终命运。为了研究这些模式的稳定性特性,我们依靠图划分对系统进行块分解。然后,为了保证稳定性,我们提供了一个小增益类型的准则,该准则取决于简化系统中每个细胞的输入输出特性。最后,我们讨论随机模型中的模式形成。借助模态分解,我们表明噪声可以扩大发生模式形成的参数区域。

相似文献

2
Seeing the results of a mutation with a vertex weighted hierarchical graph.通过顶点加权层次图查看突变结果。
BMC Proc. 2014 Aug 28;8(Suppl 2 Proceedings of the 3rd Annual Symposium on Biologica):S7. doi: 10.1186/1753-6561-8-S2-S7. eCollection 2014.
3
Total Irregularity Strengths of an Arbitrary Disjoint Union of (3,6)- Fullerenes.任意不交并(3,6)-富勒烯的总非正则强度。
Comb Chem High Throughput Screen. 2022;25(3):500-509. doi: 10.2174/1386207323666201209094514.
4
Graph partitioning induced phase transitions.图划分诱导的相变。
Phys Rev Lett. 2007 Sep 14;99(11):115701. doi: 10.1103/PhysRevLett.99.115701. Epub 2007 Sep 10.
5
Lumping evolutionary game dynamics on networks.将网络上的进化博弈动力学归为一类。
J Theor Biol. 2016 Oct 21;407:328-338. doi: 10.1016/j.jtbi.2016.07.037. Epub 2016 Jul 27.
6
Evolutionary dynamics on graphs.图上的进化动力学。
Nature. 2005 Jan 20;433(7023):312-6. doi: 10.1038/nature03204.
7
On the centrality of vertices of molecular graphs.关于分子图顶点的中心性。
J Comput Chem. 2013 Nov 5;34(29):2514-23. doi: 10.1002/jcc.23413. Epub 2013 Aug 19.
10
Computing the partition dimension of certain families of Toeplitz graph.计算某些托普利兹图族的划分维数。
Front Comput Neurosci. 2022 Oct 14;16:959105. doi: 10.3389/fncom.2022.959105. eCollection 2022.

引用本文的文献

3
Pattern Formation over Multigraphs.多重图上的模式形成
IEEE Trans Netw Sci Eng. 2018 Jan-Mar;5(1):55-64. doi: 10.1109/TNSE.2017.2730261. Epub 2017 Jul 21.

本文引用的文献

1
Fluctuation-driven Turing patterns.涨落驱动的图灵斑图
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011112. doi: 10.1103/PhysRevE.84.011112. Epub 2011 Jul 11.
2
Stochastic Turing patterns in the Brusselator model.布鲁塞尔振子模型中的随机图灵模式。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046215. doi: 10.1103/PhysRevE.81.046215. Epub 2010 Apr 27.
6
Pattern formation in discrete cell lattices.离散细胞晶格中的模式形成。
J Math Biol. 2001 Nov;43(5):411-45. doi: 10.1007/s002850100105.
9
A theory of biological pattern formation.一种生物模式形成的理论。
Kybernetik. 1972 Dec;12(1):30-9. doi: 10.1007/BF00289234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验