Howard Hughes Medical Institute, Division of Biology and Department of Applied Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
Nature. 2010 May 6;465(7294):86-90. doi: 10.1038/nature08959. Epub 2010 Apr 25.
The Notch-Delta signalling pathway allows communication between neighbouring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch-Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis-trans input-output relationship in the Notch-Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch-Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours.
Notch-Delta 信号通路允许发育过程中相邻细胞之间进行通信。它在“细粒度”模式的形成中起着关键作用,在最初等同的相邻细胞群体中产生不同的细胞命运,并在发育组织中清晰划定相邻区域。已经表明 Delta 配体具有两种活性:它在相邻细胞中转激活 Notch,并在自身细胞中顺式抑制 Notch。然而,目前尚不清楚 Notch 如何整合这两种活性,以及由此产生的系统如何促进模式形成。在这里,我们报告了开发一种定量延时显微镜平台的进展,用于分析单个哺乳动物细胞中的 Notch-Delta 信号动力学,旨在解决这些问题。通过控制顺式和反式 Delta 的浓度,并监测 Notch 报告者的动态,我们测量了 Notch-Delta 系统中的组合顺式-反式输入-输出关系。数据显示 Notch 对顺式和反式 Delta 的反应之间存在显著差异:尽管反式 Delta 的反应是分级的,但顺式 Delta 的反应是尖锐的,并且在固定阈值处发生,与反式 Delta 无关。我们开发了一个简单的数学模型,该模型表明这些行为如何从同一细胞中 Notch 和 Delta 蛋白的相互失活中出现。这种相互作用在相互排斥的发送(高 Delta/低 Notch)和接收(高 Notch/低 Delta)信号状态之间产生了超敏开关。在细胞水平上,即使没有转录介导的反馈,这种开关也可以放大相邻细胞之间的微小差异。这种 Notch-Delta 信号开关有助于在发育模型中形成锐利的边界和横向抑制模式,并为以前无法解释的突变体行为提供了深入的了解。