Department of Electrical Engineering, University of California, Berkeley, CA, USA.
Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
Nat Commun. 2020 Mar 13;11(1):1355. doi: 10.1038/s41467-020-15166-3.
Designing and implementing synthetic biological pattern formation remains challenging due to underlying theoretical complexity as well as the difficulty of engineering multicellular networks biochemically. Here, we introduce a cell-in-the-loop approach where living cells interact through in silico signaling, establishing a new testbed to interrogate theoretical principles when internal cell dynamics are incorporated rather than modeled. We present an easy-to-use theoretical test to predict the emergence of contrasting patterns in gene expression among laterally inhibiting cells. Guided by the theory, we experimentally demonstrate spontaneous checkerboard patterning in an optogenetic setup, where cell-to-cell signaling is emulated with light inputs calculated in silico from real-time gene expression measurements. The scheme successfully produces spontaneous, persistent checkerboard patterns for systems of sixteen patches, in quantitative agreement with theoretical predictions. Our research highlights how tools from dynamical systems theory may inform our understanding of patterning, and illustrates the potential of cell-in-the-loop for engineering synthetic multicellular systems.
由于潜在的理论复杂性以及工程化多细胞网络的生化困难,设计和实现合成生物模式形成仍然具有挑战性。在这里,我们引入了一种细胞在回路中的方法,其中活细胞通过在硅基信号进行相互作用,建立了一个新的测试平台,当内部细胞动力学被纳入而不是建模时,可用于检验理论原理。我们提出了一种易于使用的理论测试,以预测侧向抑制细胞中基因表达出现对比模式。受理论指导,我们在光遗传学设置中实验证明了自发的棋盘状图案,其中细胞间信号通过实时基因表达测量的硅基计算的光输入来模拟。该方案成功地为十六个补丁的系统产生了自发的、持续的棋盘状图案,与理论预测定量一致。我们的研究强调了动态系统理论的工具如何为我们对模式形成的理解提供信息,并说明了细胞在回路中的设计用于工程合成多细胞系统的潜力。