Hossain Md Murad, Thapa Diwash, Sierchio Justin, Oldenburg Amy, Gallippil Caterina
Joint Department of Biomedical Engineering, University of North Carolina, Chapel hill, North Carolina, USA.
Department of Physics and Astronomy, University of North Carolina, Chapel hill, North Carolina, USA.
IEEE Int Ultrason Symp. 2016 Sep;2016. doi: 10.1109/ULTSYM.2016.7728880. Epub 2016 Nov 3.
Sub-micrometer, periodic motion detection using blind source separation (BSS) via principal component analysis (PCA) is presented in the context of magnetomotive ultrasound (MMUS) imaging and Shearwave Dispersion Ultrasound Vibrometry (SDUV). In MMUS, an oscillating external magnetic field displaces tissue loaded with superparamagnetic iron oxide (SPIO) particles, whereas in SDUV, periodic tissue motion is induced using acoustic radiation force (ARF) to measure visco-elastic properties. BSS motion detection performance in MMUS imaging and SDUV was compared against frequency-phase locked (FPL) and normalized cross-correlation (NCC) motion detectors, respectively, and in experimental phantoms. Parametric MMUS phantom images constructed using the BSS method had nearly twice the SNR of the corresponding images constructed using FPL method when a 0.043 mm or smaller kernel size was used. In FEM models of SDUV, the error in the BSS-estimated viscoelastic properties of simulated materials was < 10%, whereas the error was > 20% using NCC when the simulated SNR was 15 dB. In a calibrated elasticity phantom, the amplitude of the motion was ≤ 0.5 μm for a scanner power level ≤ 20%. The median percent error in BSS-derived shear modulus of the phantom was -6.8%, -1.55%, -17.11% for power level of 20%, 15%, and 10%, respectively. The corresponding NCC-derived errors were 29.90%, 127.1%, and 244.70%. These results suggest the relevance of using BSS for the detection of sub-micrometer, periodic motion in MMUS and SDUV imaging, particularly when SNR is less than 15 dB and/or induced displacements are less than 0.5 μm.
本文在磁动力超声(MMUS)成像和剪切波频散超声振动测量法(SDUV)的背景下,介绍了通过主成分分析(PCA)利用盲源分离(BSS)进行亚微米级周期性运动检测。在MMUS中,振荡的外部磁场使负载超顺磁性氧化铁(SPIO)颗粒的组织发生位移,而在SDUV中,使用声辐射力(ARF)诱导组织周期性运动以测量粘弹性特性。分别在实验体模中,将MMUS成像和SDUV中的BSS运动检测性能与频率相位锁定(FPL)和归一化互相关(NCC)运动检测器进行了比较。当使用0.043毫米或更小的内核大小时,使用BSS方法构建的参数化MMUS体模图像的信噪比几乎是使用FPL方法构建的相应图像的两倍。在SDUV的有限元模型中,当模拟信噪比为15 dB时,BSS估计的模拟材料粘弹性特性的误差<10%,而使用NCC时误差>20%。在校准的弹性体模中,对于≤20%的扫描仪功率水平,运动幅度≤0.5μm。对于20%、15%和10%的功率水平,体模中BSS衍生的剪切模量的中位百分比误差分别为-6.8%、-1.55%、-17.11%。相应的NCC衍生误差分别为29.90%、127.1%和244.70%。这些结果表明,在MMUS和SDUV成像中,使用BSS检测亚微米级周期性运动具有重要意义,特别是当信噪比小于15 dB和/或诱导位移小于0.5μm时。