Suppr超能文献

基于盲源分离的亚微米级超声成像周期性位移运动探测器

Blind Source Separation - Based Motion Detector for Sub-Micrometer, Periodic Displacement in Ultrasonic Imaging.

作者信息

Hossain Md Murad, Thapa Diwash, Sierchio Justin, Oldenburg Amy, Gallippil Caterina

机构信息

Joint Department of Biomedical Engineering, University of North Carolina, Chapel hill, North Carolina, USA.

Department of Physics and Astronomy, University of North Carolina, Chapel hill, North Carolina, USA.

出版信息

IEEE Int Ultrason Symp. 2016 Sep;2016. doi: 10.1109/ULTSYM.2016.7728880. Epub 2016 Nov 3.

Abstract

Sub-micrometer, periodic motion detection using blind source separation (BSS) via principal component analysis (PCA) is presented in the context of magnetomotive ultrasound (MMUS) imaging and Shearwave Dispersion Ultrasound Vibrometry (SDUV). In MMUS, an oscillating external magnetic field displaces tissue loaded with superparamagnetic iron oxide (SPIO) particles, whereas in SDUV, periodic tissue motion is induced using acoustic radiation force (ARF) to measure visco-elastic properties. BSS motion detection performance in MMUS imaging and SDUV was compared against frequency-phase locked (FPL) and normalized cross-correlation (NCC) motion detectors, respectively, and in experimental phantoms. Parametric MMUS phantom images constructed using the BSS method had nearly twice the SNR of the corresponding images constructed using FPL method when a 0.043 mm or smaller kernel size was used. In FEM models of SDUV, the error in the BSS-estimated viscoelastic properties of simulated materials was < 10%, whereas the error was > 20% using NCC when the simulated SNR was 15 dB. In a calibrated elasticity phantom, the amplitude of the motion was ≤ 0.5 μm for a scanner power level ≤ 20%. The median percent error in BSS-derived shear modulus of the phantom was -6.8%, -1.55%, -17.11% for power level of 20%, 15%, and 10%, respectively. The corresponding NCC-derived errors were 29.90%, 127.1%, and 244.70%. These results suggest the relevance of using BSS for the detection of sub-micrometer, periodic motion in MMUS and SDUV imaging, particularly when SNR is less than 15 dB and/or induced displacements are less than 0.5 μm.

摘要

本文在磁动力超声(MMUS)成像和剪切波频散超声振动测量法(SDUV)的背景下,介绍了通过主成分分析(PCA)利用盲源分离(BSS)进行亚微米级周期性运动检测。在MMUS中,振荡的外部磁场使负载超顺磁性氧化铁(SPIO)颗粒的组织发生位移,而在SDUV中,使用声辐射力(ARF)诱导组织周期性运动以测量粘弹性特性。分别在实验体模中,将MMUS成像和SDUV中的BSS运动检测性能与频率相位锁定(FPL)和归一化互相关(NCC)运动检测器进行了比较。当使用0.043毫米或更小的内核大小时,使用BSS方法构建的参数化MMUS体模图像的信噪比几乎是使用FPL方法构建的相应图像的两倍。在SDUV的有限元模型中,当模拟信噪比为15 dB时,BSS估计的模拟材料粘弹性特性的误差<10%,而使用NCC时误差>20%。在校准的弹性体模中,对于≤20%的扫描仪功率水平,运动幅度≤0.5μm。对于20%、15%和10%的功率水平,体模中BSS衍生的剪切模量的中位百分比误差分别为-6.8%、-1.55%、-17.11%。相应的NCC衍生误差分别为29.90%、127.1%和244.70%。这些结果表明,在MMUS和SDUV成像中,使用BSS检测亚微米级周期性运动具有重要意义,特别是当信噪比小于15 dB和/或诱导位移小于0.5μm时。

相似文献

1
Blind Source Separation - Based Motion Detector for Sub-Micrometer, Periodic Displacement in Ultrasonic Imaging.
IEEE Int Ultrason Symp. 2016 Sep;2016. doi: 10.1109/ULTSYM.2016.7728880. Epub 2016 Nov 3.
2
Blind Source Separation-Based Motion Detector for Imaging Super-Paramagnetic Iron Oxide (SPIO) Particles in Magnetomotive Ultrasound Imaging.
IEEE Trans Med Imaging. 2018 Oct;37(10):2356-2366. doi: 10.1109/TMI.2018.2848204. Epub 2018 Jun 15.
3
On the Performance of Time Domain Displacement Estimators for Magnetomotive Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):911-921. doi: 10.1109/TUFFC.2019.2903885. Epub 2019 Mar 8.
4
The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
Ultrasound Med Biol. 2015 Feb;41(2):601-9. doi: 10.1016/j.ultrasmedbio.2014.09.028. Epub 2014 Dec 23.
5
7
Lamb wave Shearwave dispersion ultrasound Vibrometry (SDUV) validation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:45-8. doi: 10.1109/IEMBS.2010.5626336.
8
A Review of Shearwave Dispersion Ultrasound Vibrometry (SDUV) and its Applications.
Curr Med Imaging Rev. 2012 Feb 1;8(1):27-36. doi: 10.2174/157340512799220625.
9
Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):285-296. doi: 10.1109/TUFFC.2018.2885460. Epub 2018 Dec 7.
10
Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Aug;61(8):1276-83. doi: 10.1109/TUFFC.2014.3034.

引用本文的文献

1
Blind Source Separation-Based Motion Detector for Imaging Super-Paramagnetic Iron Oxide (SPIO) Particles in Magnetomotive Ultrasound Imaging.
IEEE Trans Med Imaging. 2018 Oct;37(10):2356-2366. doi: 10.1109/TMI.2018.2848204. Epub 2018 Jun 15.
2
Effect of Model Thrombus Volume and Elastic Modulus on Magnetomotive Ultrasound Signal Under Pulsatile Flow.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1380-1388. doi: 10.1109/TUFFC.2018.2841774. Epub 2018 May 28.

本文引用的文献

1
Contrast-enhanced imaging of SPIO-labeled platelets using magnetomotive ultrasound.
Phys Med Biol. 2013 Oct 21;58(20):7277-90. doi: 10.1088/0031-9155/58/20/7277. Epub 2013 Sep 27.
2
Single tracking location methods suppress speckle noise in shear wave velocity estimation.
Ultrason Imaging. 2013 Apr;35(2):109-25. doi: 10.1177/0161734612474159.
3
Complex principal components for robust motion estimation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2437-49. doi: 10.1109/TUFFC.2010.1710.
4
Quantitative viscoelastic parameters measured by harmonic motion imaging.
Phys Med Biol. 2009 Jun 7;54(11):3579-94. doi: 10.1088/0031-9155/54/11/020. Epub 2009 May 19.
5
Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):55-62. doi: 10.1109/TUFFC.2009.1005.
6
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
7
Robust principal component analysis and clustering methods for automated classification of tissue response to ARFI excitation.
Ultrasound Med Biol. 2008 Feb;34(2):309-25. doi: 10.1016/j.ultrasmedbio.2007.07.019. Epub 2007 Oct 29.
8
Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):290-300. doi: 10.1109/tuffc.2007.243.
9
Rapid tracking of small displacements with ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17. doi: 10.1109/tuffc.2006.1642509.
10
A finite-element method model of soft tissue response to impulsive acoustic radiation force.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Oct;52(10):1699-712. doi: 10.1109/tuffc.2005.1561624.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验