Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.
Invermay Agricultural Centre, AgResearch Ltd., Mosgiel 9053, New Zealand.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11293-E11302. doi: 10.1073/pnas.1711243115. Epub 2017 Dec 11.
The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the () gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old -line sheep expressing a human CAG-expansion cDNA transgene. Our HD sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter in the striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.
神经退行性疾病亨廷顿病 (HD) 通常以纹状体神经元广泛丧失以及中年发病的衰弱性和进行性舞蹈病、痴呆和心理障碍为特征。HD 是由 () 基因中的 CAG 重复扩展引起的,导致亨廷顿蛋白中的谷氨酸延伸。导致细胞功能障碍和死亡超出致病突变的发病机制尚不清楚。为了进一步描绘 HD 中的早期分子事件,我们对表达人类 CAG 扩展 cDNA 转基因的 5 岁 -line 绵羊的纹状体组织进行了 RNA 测序 (RNA-seq)。我们的 HD 绵羊是前驱模型,表现出最小的病理学和无法检测到的神经元丧失。我们在纹状体中发现了尿素转运蛋白 () 的显着增加水平,以及其他重要的渗透压调节剂。进一步的研究表明,尿素在纹状体和小脑中的代谢物水平升高,与我们最近发表的关于 HD 病例死后人脑中尿素增加的观察结果一致。在此发现的基础上,我们证明了更大的 HD 病例队列中的人脑尿素水平升高,包括那些具有低水平神经病理学 (Vonsattel 分级 0/1) 的病例。这种升高表明蛋白质分解代谢增加,可能是由于 HD 中的一般代谢缺陷而作为替代能量来源。尿素循环失调导致的尿素和氨水平升高已知会导致神经损伤。总之,我们的研究结果表明,异常的尿素代谢可能是 HD 中神经发病机制的主要生化破坏。