Suppr超能文献

MKRMDA:基于多核学习的 Kronecker 正则化最小二乘法在 miRNA-疾病关联预测中的应用。

MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.

School of Mathematics, Shandong University, Jinan, 250100, China.

出版信息

J Transl Med. 2017 Dec 12;15(1):251. doi: 10.1186/s12967-017-1340-3.

Abstract

BACKGROUND

Recently, as the research of microRNA (miRNA) continues, there are plenty of experimental evidences indicating that miRNA could be associated with various human complex diseases development and progression. Hence, it is necessary and urgent to pay more attentions to the relevant study of predicting diseases associated miRNAs, which may be helpful for effective prevention, diagnosis and treatment of human diseases. Especially, constructing computational methods to predict potential miRNA-disease associations is worthy of more studies because of the feasibility and effectivity.

METHODS

In this work, we developed a novel computational model of multiple kernels learning-based Kronecker regularized least squares for MiRNA-disease association prediction (MKRMDA), which could reveal potential miRNA-disease associations by automatically optimizing the combination of multiple kernels for disease and miRNA.

RESULTS

MKRMDA obtained AUCs of 0.9040 and 0.8446 in global and local leave-one-out cross validation, respectively. Meanwhile, MKRMDA achieved average AUCs of 0.8894 ± 0.0015 in fivefold cross validation. Furthermore, we conducted three different kinds of case studies on some important human cancers for further performance evaluation. In the case studies of colonic cancer, esophageal cancer and lymphoma based on known miRNA-disease associations in HMDDv2.0 database, 76, 94 and 88% of the corresponding top 50 predicted miRNAs were confirmed by experimental reports, respectively. In another two kinds of case studies for new diseases without any known associated miRNAs and diseases only with known associations in HMDDv1.0 database, the verified ratios of two different cancers were 88 and 94%, respectively.

CONCLUSIONS

All the results mentioned above adequately showed the reliable prediction ability of MKRMDA. We anticipated that MKRMDA could serve to facilitate further developments in the field and the follow-up investigations by biomedical researchers.

摘要

背景

最近,随着 miRNA(microRNA)研究的不断深入,大量实验证据表明 miRNA 可能与各种人类复杂疾病的发生和发展有关。因此,有必要也有迫切需要关注相关的 miRNA 疾病关联预测研究,这可能有助于人类疾病的有效预防、诊断和治疗。特别是,构建预测潜在 miRNA-疾病关联的计算方法是值得进一步研究的,因为它具有可行性和有效性。

方法

在这项工作中,我们开发了一种基于 Kronecker 正则化最小二乘的多核学习的新型 miRNA-疾病关联预测计算模型(MKRMDA),该模型可以通过自动优化疾病和 miRNA 的多核组合来揭示潜在的 miRNA-疾病关联。

结果

MKRMDA 在全局和局部留一法交叉验证中分别获得了 0.9040 和 0.8446 的 AUC 值。同时,MKRMDA 在五重交叉验证中平均 AUC 值为 0.8894±0.0015。此外,我们还对一些重要的人类癌症进行了三种不同类型的案例研究,以进一步评估其性能。在基于 HMDDv2.0 数据库中已知 miRNA-疾病关联的结直肠癌、食管癌和淋巴瘤案例研究中,分别有 76%、94%和 88%的前 50 个预测 miRNA 被实验报道所证实。在另外两种基于 HMDDv1.0 数据库中没有任何已知相关 miRNA 和疾病的新疾病的案例研究中,两种不同癌症的验证比例分别为 88%和 94%。

结论

以上所有结果充分表明了 MKRMDA 的可靠预测能力。我们预计,MKRMDA 将有助于促进该领域的进一步发展,并为生物医学研究人员提供后续研究的便利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8778/5727873/d24957525458/12967_2017_1340_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验