Suppr超能文献

MDAKRLS:基于克罗内克正则化最小二乘法和相似度预测人类微生物-疾病关联

MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.

作者信息

Xu Da, Xu Hanxiao, Zhang Yusen, Wang Mingyi, Chen Wei, Gao Rui

机构信息

School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.

Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.

出版信息

J Transl Med. 2021 Feb 12;19(1):66. doi: 10.1186/s12967-021-02732-6.

Abstract

BACKGROUND

Microbes are closely related to human health and diseases. Identification of disease-related microbes is of great significance for revealing the pathological mechanism of human diseases and understanding the interaction mechanisms between microbes and humans, which is also useful for the prevention, diagnosis and treatment of human diseases. Considering the known disease-related microbes are still insufficient, it is necessary to develop effective computational methods and reduce the time and cost of biological experiments.

METHODS

In this work, we developed a novel computational method called MDAKRLS to discover potential microbe-disease associations (MDAs) based on the Kronecker regularized least squares. Specifically, we introduced the Hamming interaction profile similarity to measure the similarities of microbes and diseases besides Gaussian interaction profile kernel similarity. In addition, we introduced the Kronecker product to construct two kinds of Kronecker similarities between microbe-disease pairs. Then, we designed the Kronecker regularized least squares with different Kronecker similarities to obtain prediction scores, respectively, and calculated the final prediction scores by integrating the contributions of different similarities.

RESULTS

The AUCs value of global leave-one-out cross-validation and 5-fold cross-validation achieved by MDAKRLS were 0.9327 and 0.9023 ± 0.0015, which were significantly higher than five state-of-the-art methods used for comparison. Comparison results demonstrate that MDAKRLS has faster computing speed under two kinds of frameworks. In addition, case studies of inflammatory bowel disease (IBD) and asthma further showed 19 (IBD), 19 (asthma) of the top 20 prediction disease-related microbes could be verified by previously published biological or medical literature.

CONCLUSIONS

All the evaluation results adequately demonstrated that MDAKRLS has an effective and reliable prediction performance. It may be a useful tool to seek disease-related new microbes and help biomedical researchers to carry out follow-up studies.

摘要

背景

微生物与人类健康和疾病密切相关。鉴定与疾病相关的微生物对于揭示人类疾病的病理机制、理解微生物与人类之间的相互作用机制具有重要意义,这对人类疾病的预防、诊断和治疗也很有帮助。考虑到已知的与疾病相关的微生物仍然不足,有必要开发有效的计算方法,减少生物学实验的时间和成本。

方法

在这项工作中,我们开发了一种名为MDAKRLS的新型计算方法,用于基于克罗内克正则化最小二乘法发现潜在的微生物-疾病关联(MDA)。具体而言,除了高斯相互作用轮廓核相似性外,我们引入了汉明相互作用轮廓相似性来衡量微生物和疾病的相似性。此外,我们引入克罗内克积来构建微生物-疾病对之间的两种克罗内克相似性。然后,我们设计了具有不同克罗内克相似性的克罗内克正则化最小二乘法来分别获得预测分数,并通过整合不同相似性的贡献来计算最终预测分数。

结果

MDAKRLS在全局留一法交叉验证和5折交叉验证中获得的AUC值分别为0.9327和0.9023±0.0015,显著高于用于比较的五种最先进方法。比较结果表明,MDAKRLS在两种框架下具有更快的计算速度。此外,炎症性肠病(IBD)和哮喘的案例研究进一步表明,前20个预测的与疾病相关的微生物中,有19个(IBD)、19个(哮喘)可以通过先前发表的生物学或医学文献得到验证。

结论

所有评估结果充分表明,MDAKRLS具有有效且可靠的预测性能。它可能是寻找与疾病相关的新微生物的有用工具,并有助于生物医学研究人员开展后续研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a41/7881563/2f2bce25223e/12967_2021_2732_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验