Suppr超能文献

基于异质超图卷积和异质图多尺度卷积的miRNA-疾病关联预测

Prediction of miRNA-disease association based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution.

作者信息

Dai Wei, Pang Sifan, He Zhichen, Fu Xiaodong, Liu Li, Liu Lijun, Yu Ning

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China.

Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China.

出版信息

Health Inf Sci Syst. 2024 Dec 8;13(1):4. doi: 10.1007/s13755-024-00319-1. eCollection 2025 Dec.

Abstract

Making the accurate prediction of miRNA-disease associations essential for medical interventions. Current computational models often fail to capture the complexity of miRNA-disease associations. This study proposes HHMDA, a method based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution, to predict the association between miRNA and disease. Firstly, HHMDA constructs a heterogeneous graph of miRNA-disease relationships. Then, a graph convolution is run on the heterogeneous graph to capture the multi-scale feature representations of miRNA and disease. MiRNA-disease association are reconstructed based on these features. Meanwhile, HHMDA constructs a heterogeneous hypergraph with miRNAs and diseases as nodes, and the hyperedges consist of miRNAs and diseases linked to the same genes. HHMDA performs hypergraph graph convolution operation on the heterogeneous hypergraph to extract the high-order features of miRNA and disease. Finally, these features are leveraged to calculate the Laplacian regularization loss and combined with the miRNA-disease association matrix reconstruction loss to optimize the model. The experimental results show that HHMDA has advantages over the existing state-of-the-art methods under different experimental settings.

摘要

准确预测miRNA与疾病的关联对于医学干预至关重要。当前的计算模型常常无法捕捉miRNA与疾病关联的复杂性。本研究提出了HHMDA,一种基于异质超图卷积和异质图多尺度卷积的方法,用于预测miRNA与疾病之间的关联。首先,HHMDA构建了一个miRNA-疾病关系的异质图。然后,在该异质图上运行图卷积以捕捉miRNA和疾病的多尺度特征表示。基于这些特征重建miRNA-疾病关联。同时,HHMDA构建了一个以miRNA和疾病为节点的异质超图,超边由与相同基因相连的miRNA和疾病组成。HHMDA在异质超图上执行超图卷积操作以提取miRNA和疾病的高阶特征。最后,利用这些特征计算拉普拉斯正则化损失,并与miRNA-疾病关联矩阵重建损失相结合以优化模型。实验结果表明,在不同的实验设置下,HHMDA优于现有的最先进方法。

相似文献

本文引用的文献

1
Predicting Plant miRNA-lncRNA Interactions via a Deep Learning Method.基于深度学习方法预测植物 miRNA-lncRNA 相互作用
IEEE Trans Nanobioscience. 2023 Oct;22(4):728-733. doi: 10.1109/TNB.2023.3275178. Epub 2023 Oct 3.
8
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.GCAEMDA:基于图卷积自动编码器预测 miRNA-疾病关联
PLoS Comput Biol. 2021 Dec 10;17(12):e1009655. doi: 10.1371/journal.pcbi.1009655. eCollection 2021 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验