Suppr超能文献

全球范围内转录延伸波对遗传毒性应激的释放限制了体细胞突变率。

Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate.

机构信息

Biomedical Sciences Research Center 'Alexander Fleming', 34 Fleming Street, Vari, 16672, Athens, Greece.

出版信息

Nat Commun. 2017 Dec 12;8(1):2076. doi: 10.1038/s41467-017-02145-4.

Abstract

Complex molecular responses preserve gene expression accuracy and genome integrity in the face of environmental perturbations. Here we report that, in response to UV irradiation, RNA polymerase II (RNAPII) molecules are dynamically and synchronously released from promoter-proximal regions into elongation to promote uniform and accelerated surveillance of the whole transcribed genome. The maximised influx of de novo released RNAPII correlates with increased damage-sensing, as confirmed by RNAPII progressive accumulation at dipyrimidine sites and by the average slow-down of elongation rates in gene bodies. In turn, this transcription elongation 'safe' mode guarantees efficient DNA repair regardless of damage location, gene size and transcription level. Accordingly, we detect low and homogenous rates of mutational signatures associated with UV exposure or cigarette smoke across all active genes. Our study reveals a novel advantage for transcription regulation at the promoter-proximal level and provides unanticipated insights into how active transcription shapes the mutagenic landscape of cancer genomes.

摘要

复杂的分子反应能在面对环境干扰时保持基因表达的准确性和基因组的完整性。在这里,我们报告说,在受到紫外线照射时,RNA 聚合酶 II(RNAPII)分子会从启动子近端区域动态且同步地释放到延伸中,以促进对整个转录基因组的均匀和加速监测。新释放的 RNAPII 的最大流入量与损伤感应的增加相关,这一点通过 RNAPII 在二嘧啶位点的逐渐积累和基因体中延伸率的平均减缓得到了证实。反过来,这种转录延伸“安全”模式可以保证无论损伤位置、基因大小和转录水平如何,都能有效地进行 DNA 修复。因此,我们在所有活跃基因中检测到与紫外线照射或香烟烟雾相关的低且均匀的突变特征率。我们的研究揭示了启动子近端水平转录调控的新优势,并为活跃转录如何塑造癌症基因组的诱变景观提供了意想不到的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b064/5727188/1277eb7ba380/41467_2017_2145_Fig1_HTML.jpg

相似文献

2
RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells.
J Biol Chem. 2018 Feb 16;293(7):2476-2486. doi: 10.1074/jbc.RA117.000971. Epub 2017 Dec 27.
4
Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct.
Biochem Biophys Res Commun. 2004 Aug 6;320(4):1133-8. doi: 10.1016/j.bbrc.2004.06.066.
5
Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
Nature. 2016 Apr 14;532(7598):259-63. doi: 10.1038/nature17437.
7
Transcription factor IIS impacts UV-inhibited transcription.
DNA Repair (Amst). 2010 Nov 10;9(11):1142-50. doi: 10.1016/j.dnarep.2010.08.002. Epub 2010 Aug 21.
8
Dynamic enhancer-gene body contacts during transcription elongation.
Genes Dev. 2015 Oct 1;29(19):1992-7. doi: 10.1101/gad.255265.114.
9
Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress.
Nat Commun. 2023 Jan 20;14(1):341. doi: 10.1038/s41467-023-35922-5.
10
Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver?
Bioessays. 2019 Mar;41(3):e1800152. doi: 10.1002/bies.201800152. Epub 2019 Feb 25.

引用本文的文献

1
IncRNA-ZFAS1, an Emerging Gate-Keeper in DNA Damage-Dependent Transcriptional Regulation.
Adv Sci (Weinh). 2025 Aug;12(31):e12385. doi: 10.1002/advs.202412385. Epub 2025 May 24.
2
Role of Assemblysomes in Cellular Stress Responses.
Wiley Interdiscip Rev RNA. 2025 Mar-Apr;16(2):e70009. doi: 10.1002/wrna.70009.
3
Feeling the force from within - new tools and insights into nuclear mechanotransduction.
J Cell Sci. 2025 Mar 1;138(5). doi: 10.1242/jcs.263615. Epub 2025 Mar 10.
4
Translational Approach to Social Isolation During a Global Pandemic: Hippocampal Somatic Mutation and Stress.
Psychiatry Investig. 2024 Dec;21(12):1360-1371. doi: 10.30773/pi.2024.0178. Epub 2024 Dec 23.
6
From silence to symphony: transcriptional repression and recovery in response to DNA damage.
Transcription. 2024 Jun-Oct;15(3-5):161-175. doi: 10.1080/21541264.2024.2406717. Epub 2024 Oct 1.
8
Gene architecture is a determinant of the transcriptional response to bulky DNA damages.
Life Sci Alliance. 2024 Jan 2;7(3). doi: 10.26508/lsa.202302328. Print 2024 Mar.

本文引用的文献

1
Nucleotide Excision Repair: From Neurodegeneration to Cancer.
Adv Exp Med Biol. 2017;1007:17-39. doi: 10.1007/978-3-319-60733-7_2.
2
Dynamic maps of UV damage formation and repair for the human genome.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6758-6763. doi: 10.1073/pnas.1706522114. Epub 2017 Jun 12.
3
UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene.
Cell. 2017 Feb 23;168(5):843-855.e13. doi: 10.1016/j.cell.2017.01.019. Epub 2017 Feb 16.
4
P-TEFb: Finding its ways to release promoter-proximally paused RNA polymerase II.
Transcription. 2018;9(2):88-94. doi: 10.1080/21541264.2017.1281864. Epub 2018 Jan 12.
5
Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9057-62. doi: 10.1073/pnas.1606667113. Epub 2016 Jul 25.
6
Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II.
Nucleic Acids Res. 2016 Aug 19;44(14):6853-67. doi: 10.1093/nar/gkw571. Epub 2016 Jun 28.
7
DNA REPAIR. Drugging DNA repair.
Science. 2016 Jun 3;352(6290):1178-9. doi: 10.1126/science.aab0958.
8
Multiomic Analysis of the UV-Induced DNA Damage Response.
Cell Rep. 2016 May 17;15(7):1597-1610. doi: 10.1016/j.celrep.2016.04.047. Epub 2016 May 12.
9
Nucleotide excision repair is impaired by binding of transcription factors to DNA.
Nature. 2016 Apr 14;532(7598):264-7. doi: 10.1038/nature17661.
10
Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
Nature. 2016 Apr 14;532(7598):259-63. doi: 10.1038/nature17437.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验