Álvarez Luisana, Valverde Sergi, Rovira Àlex, Lladó Xavier
Vicorob Institute, University of Girona, Girona, Spain; Tensor Medical, Girona, Spain.
Tensor Medical, Girona, Spain.
Neuroimage Clin. 2025;46:103795. doi: 10.1016/j.nicl.2025.103795. Epub 2025 May 20.
Multiple sclerosis (MS) lesion segmentation is crucial for monitoring disease progression. Deep learning methods have shown promising results but suffer from domain shift problems when evaluated in data from different protocols or scanners. Transfer learning (TL) achieves successful domain adaptation, but can lead to catastrophic forgetting, resulting in a significant performance drop on the source domain. Continuous learning aims to address this issue by retaining knowledge from previous domains while adapting to new ones. This work applies Elastic Weight Consolidation (EWC) for the first time in the context of domain-incremental learning for MS lesion segmentation. The approach was evaluated using a 3D U-Net trained on public datasets (WMH2017 and Shifts) and fine-tuned on an in-house dataset using both TL and EWC, in both full training and few-shot scenarios. Results show that with only 3 training images from the target domain, EWC leads to a 10% improvement in F-score, while using 5 images achieves similar results to using all available training images. Catastrophic forgetting was reduced by 8%-19% compared to standard TL, where performance drops ranged from 20 to 37%. This work demonstrates that EWC enables models to adapt to new domains while preserving previous knowledge, with minimal data requirements, advancing towards more generalizable deep learning models for clinical MS applications.
多发性硬化症(MS)病变分割对于监测疾病进展至关重要。深度学习方法已显示出有前景的结果,但在来自不同协议或扫描仪的数据中进行评估时会受到域转移问题的影响。迁移学习(TL)实现了成功的域适应,但可能导致灾难性遗忘,从而使源域的性能显著下降。持续学习旨在通过在适应新领域的同时保留来自先前领域的知识来解决这个问题。这项工作首次在MS病变分割的域增量学习背景下应用弹性权重巩固(EWC)。该方法使用在公共数据集(WMH2017和Shifts)上训练并在内部数据集上使用TL和EWC进行微调的3D U-Net进行评估,涵盖全量训练和少样本场景。结果表明,仅使用来自目标域的3张训练图像,EWC就能使F分数提高10%,而使用5张图像可获得与使用所有可用训练图像相似的结果。与标准TL相比,灾难性遗忘减少了8%-19%,标准TL的性能下降幅度为20%至37%。这项工作表明,EWC能使模型在保留先前知识的同时适应新领域,且数据需求最小,朝着更适用于临床MS应用的可推广深度学习模型迈进。
Neuroimage Clin. 2018-12-10
Neuroimage Clin. 2024
Comput Med Imaging Graph. 2023-1
Neuroimage Clin. 2024
Bioengineering (Basel). 2024-8-22
Neuroimage Clin. 2024
Comput Biol Med. 2023-7
Front Neurosci. 2022-10-21
IEEE Trans Med Imaging. 2023-3