文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用弹性权重巩固减轻多发性硬化症病变分割中的灾难性遗忘

Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation.

作者信息

Álvarez Luisana, Valverde Sergi, Rovira Àlex, Lladó Xavier

机构信息

Vicorob Institute, University of Girona, Girona, Spain; Tensor Medical, Girona, Spain.

Tensor Medical, Girona, Spain.

出版信息

Neuroimage Clin. 2025;46:103795. doi: 10.1016/j.nicl.2025.103795. Epub 2025 May 20.


DOI:10.1016/j.nicl.2025.103795
PMID:40403421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12148725/
Abstract

Multiple sclerosis (MS) lesion segmentation is crucial for monitoring disease progression. Deep learning methods have shown promising results but suffer from domain shift problems when evaluated in data from different protocols or scanners. Transfer learning (TL) achieves successful domain adaptation, but can lead to catastrophic forgetting, resulting in a significant performance drop on the source domain. Continuous learning aims to address this issue by retaining knowledge from previous domains while adapting to new ones. This work applies Elastic Weight Consolidation (EWC) for the first time in the context of domain-incremental learning for MS lesion segmentation. The approach was evaluated using a 3D U-Net trained on public datasets (WMH2017 and Shifts) and fine-tuned on an in-house dataset using both TL and EWC, in both full training and few-shot scenarios. Results show that with only 3 training images from the target domain, EWC leads to a 10% improvement in F-score, while using 5 images achieves similar results to using all available training images. Catastrophic forgetting was reduced by 8%-19% compared to standard TL, where performance drops ranged from 20 to 37%. This work demonstrates that EWC enables models to adapt to new domains while preserving previous knowledge, with minimal data requirements, advancing towards more generalizable deep learning models for clinical MS applications.

摘要

多发性硬化症(MS)病变分割对于监测疾病进展至关重要。深度学习方法已显示出有前景的结果,但在来自不同协议或扫描仪的数据中进行评估时会受到域转移问题的影响。迁移学习(TL)实现了成功的域适应,但可能导致灾难性遗忘,从而使源域的性能显著下降。持续学习旨在通过在适应新领域的同时保留来自先前领域的知识来解决这个问题。这项工作首次在MS病变分割的域增量学习背景下应用弹性权重巩固(EWC)。该方法使用在公共数据集(WMH2017和Shifts)上训练并在内部数据集上使用TL和EWC进行微调的3D U-Net进行评估,涵盖全量训练和少样本场景。结果表明,仅使用来自目标域的3张训练图像,EWC就能使F分数提高10%,而使用5张图像可获得与使用所有可用训练图像相似的结果。与标准TL相比,灾难性遗忘减少了8%-19%,标准TL的性能下降幅度为20%至37%。这项工作表明,EWC能使模型在保留先前知识的同时适应新领域,且数据需求最小,朝着更适用于临床MS应用的可推广深度学习模型迈进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/ff3a3f339dbb/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/25556be834d0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/5c7588a94c3a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/42733af452bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/feaa16b8c29a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/498e87ac15e1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/602fa1896c7f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/ff3a3f339dbb/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/25556be834d0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/5c7588a94c3a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/42733af452bb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/feaa16b8c29a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/498e87ac15e1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/602fa1896c7f/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3685/12148725/ff3a3f339dbb/gr7.jpg

相似文献

[1]
Mitigating catastrophic forgetting in Multiple sclerosis lesion segmentation using elastic weight consolidation.

Neuroimage Clin. 2025

[2]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

[3]
LST-AI: A deep learning ensemble for accurate MS lesion segmentation.

Neuroimage Clin. 2024

[4]
CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation.

Med Image Anal. 2025-2

[5]
Subject-Based Transfer Learning in Longitudinal Multiple Sclerosis Lesion Segmentation.

J Neuroimaging. 2025

[6]
DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation.

Med Image Anal. 2022-2

[7]
Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.

Magn Reson Imaging. 2019-10-25

[8]
Adaptive wavelet-VNet for single-sample test time adaptation in medical image segmentation.

Med Phys. 2024-12

[9]
Minimizing the effect of white matter lesions on deep learning based tissue segmentation for brain volumetry.

Comput Med Imaging Graph. 2023-1

[10]
Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.

Med Phys. 2022-9

本文引用的文献

[1]
Scanner-specific optimisation of automated lesion segmentation in MS.

Neuroimage Clin. 2024

[2]
Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort.

Bioengineering (Basel). 2024-8-22

[3]
LST-AI: A deep learning ensemble for accurate MS lesion segmentation.

Neuroimage Clin. 2024

[4]
Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis.

Neurol Clin. 2024-2

[5]
3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies.

Front Neurosci. 2023-10-27

[6]
Boosting multiple sclerosis lesion segmentation through attention mechanism.

Comput Biol Med. 2023-7

[7]
Multi-arm U-Net with dense input and skip connectivity for T2 lesion segmentation in clinical trials of multiple sclerosis.

Sci Rep. 2023-3-13

[8]
Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach.

Front Neurosci. 2022-11-24

[9]
New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation.

Front Neurosci. 2022-10-21

[10]
Domain-Incremental Cardiac Image Segmentation With Style-Oriented Replay and Domain-Sensitive Feature Whitening.

IEEE Trans Med Imaging. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索