L-NESS and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via Cozzi 55, I-20125 Milano, Italy.
Institute of Semiconductor and Solid State Physics, Johannes Kepler University , Altenbergerstraße 69, Linz 4040, Austria.
Nano Lett. 2018 Jan 10;18(1):505-512. doi: 10.1021/acs.nanolett.7b04472. Epub 2017 Dec 20.
Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route toward quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared with previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.
已经有几种半导体量子点技术被用于产生纠缠光子对。在其他技术中,液滴外延技术可以控制量子发射器的形状、大小、密度和发射波长。然而,这种方法能够制造出的可用于纠缠的量子点的比例仍然限制在 5%左右,并且使纠缠光子的能量与原子跃迁相匹配(这是实现量子网络的一个很有前途的途径)仍然是一个悬而未决的挑战。在这里,我们通过在高对称(111)A 衬底上引入一种改进的液滴外延方法来克服这些障碍,与之前的报告相比,在该方法中,基本的结晶步骤在显著更高的温度下进行。由于精细结构分裂和辐射寿命较小,以及选择 GaAs/AlGaAs 材料提供的减少的激子退相,我们的方法大大提高了感兴趣的发射波长附近的纠缠准备光子源的产率,该产率可以高达 95%。量子点设计用于发射基于 Rb 的慢光介质的工作光谱区域,为量子中继站提供了可行的技术。