De Boer R J, Hogeweg P
Bull Math Biol. 1989;51(2):217-22. doi: 10.1007/BF02458443.
Hoffmann (1982) analysed a very simple model of suppressive idiotypic immune networks and showed that idiotypic interactions are stabilizing. He concluded that immune networks provide a counterexample to the general analysis of large dynamic systems (Gardner and Ashby, 1970; May, 1972). The latter is often verbalized as: an increase in size and/or connectivity decreases the system stability. We here analyse this apparent contradiction by extending the Hoffmann model (with a decay term), and comparing it to an ecological model that was used as a paradigm in the general analysis. Our analysis confirms that the neighbourhood stability of such idiotypic networks increases with connectivity and/or size. However, the contradiction is one of interpretation, and is not due to exceptional properties of immune networks. The contradiction is caused by the awkward normalization used in the general analysis.
霍夫曼(1982年)分析了一个非常简单的抑制性独特型免疫网络模型,并表明独特型相互作用具有稳定作用。他得出结论,免疫网络为大型动态系统的一般分析提供了一个反例(加德纳和阿什比,1970年;梅,1972年)。后者通常表述为:规模和/或连通性的增加会降低系统稳定性。我们在此通过扩展霍夫曼模型(加入一个衰减项)并将其与在一般分析中用作范例的生态模型进行比较,来分析这一明显的矛盾。我们的分析证实,此类独特型网络的邻域稳定性会随着连通性和/或规模的增加而提高。然而,这种矛盾是一种解释上的矛盾,并非源于免疫网络的特殊性质。这种矛盾是由一般分析中使用的别扭的归一化方法导致的。