Pham Tuan Anh, Zhang Xueqiang, Wood Brandon C, Prendergast David, Ptasinska Sylwia, Ogitsu Tadashi
Quantum Simulations Group, Lawrence Livermore National Laboratory , Livermore, California 94551, United States.
Radiation Laboratory, University of Notre Dame , Notre Dame, Indiana 46556, United States.
J Phys Chem Lett. 2018 Jan 4;9(1):194-203. doi: 10.1021/acs.jpclett.7b01382. Epub 2017 Dec 26.
Many energy storage and conversion devices rely on processes that take place at complex interfaces, where structural and chemical properties are often difficult to probe under operating conditions. A primary example is solar water splitting using high-performance photoelectrochemical cells, where surface chemistry, including native oxide formation, affects hydrogen generation. In this Perspective, we discuss some of the challenges associated with interrogating interface chemistry, and how they may be overcome by integrating high-level first-principles calculations of explicit interfaces with ambient pressure X-ray photoelectron spectroscopy and direct spectroscopic simulations. We illustrate the benefit of this combined approach toward insights into native oxide chemistry at prototypical InP/water and GaP/water interfaces. This example suggests a more general roadmap for obtaining a realistic and reliable description of the chemistry of complex interfaces by combining state-of-the-art computational and experimental techniques.
许多能量存储和转换设备依赖于在复杂界面处发生的过程,在这些界面处,结构和化学性质在操作条件下往往难以探测。一个主要例子是使用高性能光电化学电池进行太阳能水分解,其中包括原生氧化物形成在内的表面化学会影响氢气的产生。在这篇观点文章中,我们讨论了一些与研究界面化学相关的挑战,以及如何通过将明确界面的高级第一性原理计算与常压X射线光电子能谱和直接光谱模拟相结合来克服这些挑战。我们展示了这种组合方法对于深入了解典型InP/水和GaP/水界面处原生氧化物化学的益处。这个例子提出了一个更通用的路线图,通过结合先进的计算和实验技术来获得对复杂界面化学的现实且可靠的描述。