Suppr超能文献

具有随机性的病虫害综合防治模型选择

Model selection for integrated pest management with stochasticity.

作者信息

Akman Olcay, Comar Timothy D, Hrozencik Daniel

机构信息

Department of Mathematics, Illinois State University, Normal, IL 61790, USA.

Department of Mathematics, Benedictine University, 5700 College RD, Lisle, IL 60532, USA.

出版信息

J Theor Biol. 2018 Apr 7;442:110-122. doi: 10.1016/j.jtbi.2017.12.005. Epub 2017 Dec 12.

Abstract

In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model.

摘要

宋和向(2006年)引入了一种具有周期性变化气候条件的综合害虫管理模型。为了应对更广泛的环境影响,本文作者开展了一系列研究,得出了一种更灵活的建模方法。在阿克曼等人(2013年)的研究中,通过将随机性纳入猎物物种的出生脉冲来研究随机变化的环境条件的影响。在阿克曼等人(2014年)的研究中,作者通过混合两个出生脉冲项引入了一类模型,并确定了害虫根除解的全局和局部渐近稳定性条件。通过这项工作,作者将随机模型和混合模型组件统一起来,以便在模拟随机环境变化对综合害虫管理系统的影响时创造更大的灵活性。具体而言,我们首先确定确定性混合模型的解具有持久性的条件。然后我们分析随机模型,以找到使农药功效方差最小化的混合参数的最优值。此外,我们进行了敏感性分析,以表明通过这种优化技术确定的相应农药功效确实具有稳健性。通过数值模拟,我们表明我们的随机模型可以保持持久性。我们对模型随机版本的研究表明,我们在确定性模型上的结果为随机模型的行为提供了有参考价值的结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验