Suppr超能文献

内在交互强化学习——利用错误相关电位进行现实世界中的人机交互。

Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

机构信息

Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI) GmbH, Bremen, Germany.

Robotics Lab, Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany.

出版信息

Sci Rep. 2017 Dec 14;7(1):17562. doi: 10.1038/s41598-017-17682-7.

Abstract

Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

摘要

强化学习(RL)使机器人能够根据反馈在动态环境中学习其最佳行为策略。在机器人 RL 期间,明确的人为反馈是有利的,因为可以轻松地适应明确的奖励功能。然而,人类持续且明确地生成反馈是非常苛刻和累人的。因此,隐式方法的发展具有很高的相关性。在本文中,我们使用了错误相关电位(ErrP),即人类脑电图(EEG)中的事件相关活动,作为 RL 的内在生成隐式反馈(奖励)。最初,我们在模拟机器人学习场景中使用七名受试者验证了我们的方法。ErrP 在线在单个试验中以 91%的平衡准确性(bACC)进行检测,这足以并行学习识别手势和人类手势与机器人动作之间的正确映射。最后,我们在真实机器人场景中验证了我们的方法,其中七名受试者自由选择手势,而真实机器人正确学习了手势和动作之间的映射(ErrP 检测(90%bACC))。在本文中,我们证明了 RL 中内在生成的基于 EEG 的人为反馈可以成功地用于在人机交互期间隐式改善基于手势的机器人控制。我们称我们的方法为内在交互 RL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d13/5730605/36261fc6d274/41598_2017_17682_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验