Suppr超能文献

片段错配对甲型流感病毒进化的影响。

Implications of segment mismatch for influenza A virus evolution.

作者信息

White Maria C, Lowen Anice C

机构信息

Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

J Gen Virol. 2018 Jan;99(1):3-16. doi: 10.1099/jgv.0.000989. Epub 2017 Dec 15.

Abstract

Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.

摘要

甲型流感病毒(IAV)是一种具有分段基因组的RNA病毒。由于易错复制产生的突变以及在共同感染细胞内基因片段的交换(称为重配),这些病毒特性使得IAV在选择压力下能够快速进化。突变和重配都会产生遗传多样性,但限制因素塑造了它们对病毒进化的影响:正如大多数突变是有害的一样,大多数重配事件会导致遗传不相容性。片段错配现象包括共同感染病毒之间基于RNA和蛋白质的不相容性,并导致产生具有适应性缺陷的子代病毒。片段错配是混合IAV感染结果的一个重要决定因素,并且在迄今为止进行的多项风险评估研究中都有涉及。然而,由于八个病毒基因片段之间遗传相互作用的复杂性,我们对片段错配及其潜在机制的理解仍然不完整。在这里,我们总结了关于片段错配的当前知识,并讨论了这一现象对IAV重配和多样性的影响。

相似文献

1
Implications of segment mismatch for influenza A virus evolution.
J Gen Virol. 2018 Jan;99(1):3-16. doi: 10.1099/jgv.0.000989. Epub 2017 Dec 15.
2
Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny.
J Virol. 2017 Aug 10;91(17). doi: 10.1128/JVI.00830-17. Print 2017 Sep 1.
6
Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.
J Virol. 2015 May;89(10):5406-18. doi: 10.1128/JVI.03395-14. Epub 2015 Mar 4.
7
Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment.
Mol Biol Evol. 2015 Jun;32(6):1519-32. doi: 10.1093/molbev/msv044. Epub 2015 Feb 23.
8
Constraints, Drivers, and Implications of Influenza A Virus Reassortment.
Annu Rev Virol. 2017 Sep 29;4(1):105-121. doi: 10.1146/annurev-virology-101416-041726. Epub 2017 May 26.
9
Genetic correlation between current circulating H1N1 swine and human influenza viruses.
J Clin Virol. 2010 Nov;49(3):186-91. doi: 10.1016/j.jcv.2010.07.018. Epub 2010 Aug 21.

引用本文的文献

1
Using homologous network to identify reassortment risk in H5Nx avian influenza viruses.
PLoS Comput Biol. 2025 Jul 22;21(7):e1013301. doi: 10.1371/journal.pcbi.1013301. eCollection 2025 Jul.
2
Host origin is a determinant of coevolution between gene segments of avian H9 influenza viruses.
J Virol. 2025 Jul 22;99(7):e0151824. doi: 10.1128/jvi.01518-24. Epub 2025 Jun 13.
4
Novel Epidemiologic Features of High Pathogenicity Avian Influenza Virus A H5N1 2.3.3.4b Panzootic: A Review.
Transbound Emerg Dis. 2024 Sep 27;2024:5322378. doi: 10.1155/2024/5322378. eCollection 2024.
6
Australia's first human case of H5N1 and the current H7 poultry outbreaks: implications for public health and biosecurity measures.
Lancet Reg Health West Pac. 2024 Jul 19;48:101141. doi: 10.1016/j.lanwpc.2024.101141. eCollection 2024 Jul.
8
Reverse Genetics of Bat Influenza A Viruses.
Methods Mol Biol. 2024;2733:75-86. doi: 10.1007/978-1-0716-3533-9_5.
10
Circ_PIAS1 Promotes the Apoptosis of ALV-J Infected DF1 Cells by Up-Regulating miR-183.
Genes (Basel). 2023 Jun 14;14(6):1260. doi: 10.3390/genes14061260.

本文引用的文献

1
Fitness cost of reassortment in human influenza.
PLoS Pathog. 2017 Nov 7;13(11):e1006685. doi: 10.1371/journal.ppat.1006685. eCollection 2017 Nov.
2
Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny.
J Virol. 2017 Aug 10;91(17). doi: 10.1128/JVI.00830-17. Print 2017 Sep 1.
5
The complexity of human infected AIV H5N6 isolated from China.
BMC Infect Dis. 2016 Oct 25;16(1):600. doi: 10.1186/s12879-016-1932-1.
7
Complete and Incomplete Genome Packaging of Influenza A and B Viruses.
mBio. 2016 Sep 6;7(5):e01248-16. doi: 10.1128/mBio.01248-16.
8
Virologic Differences Do Not Fully Explain the Diversification of Swine Influenza Viruses in the United States.
J Virol. 2016 Oct 28;90(22):10074-10082. doi: 10.1128/JVI.01218-16. Print 2016 Nov 15.
10
Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.
Vet Microbiol. 2016 Aug 30;192:95-101. doi: 10.1016/j.vetmic.2016.07.002. Epub 2016 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验