Suppr超能文献

基于校正因子网络的双聚类方法,用于检测癌症相关编码基因和 miRNAs 及其相互作用。

A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions.

机构信息

Department of Computer Science and Technology, Jilin University, Changchun 130012, China; Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.

Department of Computer Science and Technology, Jilin University, Changchun 130012, China.

出版信息

Methods. 2019 Aug 15;166:22-30. doi: 10.1016/j.ymeth.2019.05.010. Epub 2019 May 21.

Abstract

Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.

摘要

检测与癌症相关的基因及其相互作用是癌症研究中的一项关键任务。为此,我们提出了一种有效的方法,使用来自同一组样本的表达数据,检测与特定癌症或癌症亚型相关的编码基因、微小 RNA(miRNA)及其相互作用。首先,基于校正因子网络检测特定类型癌症特有的双聚类,并根据它们与一般癌症的关联进行排序。其次,通过考虑差异表达和差异相关值、蛋白质-蛋白质相互作用数据和潜在的癌症标志物,对每个双聚类中的编码基因和 miRNA 进行优先级排序。最后,通过结合多个排序结果,使用排名融合过程获得最终的综合排名。我们在乳腺癌数据集上应用了我们提出的方法。结果表明,我们的方法在检测乳腺癌相关编码基因和 miRNA 方面优于其他方法。此外,我们的方法在计算时间上非常高效,在台式机上可以在数小时内处理数万个基因/miRNA 和数百个患者。这项工作可能有助于研究人员研究复杂疾病的遗传结构,并提高诊断的准确性。

相似文献

2
MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
Breast Cancer Res. 2016 Jul 22;18(1):75. doi: 10.1186/s13058-016-0735-z.
3
A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes.
BMC Bioinformatics. 2013;14 Suppl 7(Suppl 7):S8. doi: 10.1186/1471-2105-14-S7-S8. Epub 2013 Apr 22.
5
Analysis of miRNA expression profiles in breast cancer using biclustering.
BMC Bioinformatics. 2015;16 Suppl 4(Suppl 4):S7. doi: 10.1186/1471-2105-16-S4-S7. Epub 2015 Feb 23.
7
Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets.
Nucleic Acids Res. 2019 May 21;47(9):e53. doi: 10.1093/nar/gkz139.
9
A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
Gene. 2016 Feb 10;577(1):55-64. doi: 10.1016/j.gene.2015.11.023. Epub 2015 Nov 27.
10
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach.
BMC Bioinformatics. 2014;15 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2105-15-S1-S4. Epub 2014 Jan 10.

引用本文的文献

1
Integrative approaches for analysis of mRNA and microRNA high-throughput data.
Comput Struct Biotechnol J. 2021 Jan 26;19:1154-1162. doi: 10.1016/j.csbj.2021.01.029. eCollection 2021.
2
Detecting Cancer Survival Related Gene Markers Based on Rectified Factor Network.
Front Bioeng Biotechnol. 2020 Apr 23;8:349. doi: 10.3389/fbioe.2020.00349. eCollection 2020.

本文引用的文献

1
MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization.
BMC Bioinformatics. 2018 Jun 5;19(1):215. doi: 10.1186/s12859-018-2216-0.
3
EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery.
Bioinformatics. 2018 Nov 1;34(21):3719-3726. doi: 10.1093/bioinformatics/bty401.
4
Identification of Prognostic Biomarkers by Combined mRNA and miRNA Expression Microarray Analysis in Pancreatic Cancer.
Transl Oncol. 2018 Jun;11(3):700-714. doi: 10.1016/j.tranon.2018.03.003. Epub 2018 Apr 6.
5
Network-based integration of multi-omics data for prioritizing cancer genes.
Bioinformatics. 2018 Jul 15;34(14):2441-2448. doi: 10.1093/bioinformatics/bty148.
6
Capture Hi-C identifies putative target genes at 33 breast cancer risk loci.
Nat Commun. 2018 Mar 12;9(1):1028. doi: 10.1038/s41467-018-03411-9.
7
Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression.
Oncol Lett. 2018 Feb;15(2):1680-1690. doi: 10.3892/ol.2017.7508. Epub 2017 Nov 30.
9
FGMD: A novel approach for functional gene module detection in cancer.
PLoS One. 2017 Dec 15;12(12):e0188900. doi: 10.1371/journal.pone.0188900. eCollection 2017.
10
MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1.
Oncol Rep. 2018 Feb;39(2):473-482. doi: 10.3892/or.2017.6114. Epub 2017 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验