Suppr超能文献

人类工作记忆任务中 EEG 功能网络分离与整合的交替动态。

Alternating Dynamics of Segregation and Integration in Human EEG Functional Networks During Working-memory Task.

机构信息

Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Milan, Italy.

Universita' Vita-Salute San Raffaele, Milan, Italy.

出版信息

Neuroscience. 2018 Feb 10;371:191-206. doi: 10.1016/j.neuroscience.2017.12.004. Epub 2017 Dec 12.

Abstract

Brain functional networks show high variability in short time windows but mechanisms governing these transient dynamics remain unknown. In this work, we studied the temporal evolution of functional brain networks involved in a working memory (WM) task while recording high-density electroencephalography (EEG) in human normal subjects. We found that functional brain networks showed an initial phase characterized by an increase of the functional segregation index followed by a second phase where the functional segregation faded after the prevailing the functional integration. Notably, wrong trials were associated with different or disrupted sequences of the segregation-integration profiles and measures of network centrality and modularity were able to identify crucial aspects of the oscillatory network dynamics. Additionally, computational investigations further supported the experimental results. The brain functional organization may respond to the information processing demand of a WM task following a 2-step atomic scheme wherein segregation and integration alternately dominate the functional configurations.

摘要

大脑功能网络在短时间窗口内表现出高度的可变性,但控制这些瞬态动力学的机制尚不清楚。在这项工作中,我们研究了人类正常受试者在进行工作记忆 (WM) 任务时记录的高密度脑电图 (EEG) 中涉及的功能大脑网络的时间演变。我们发现,功能大脑网络表现出一个初始阶段,其特征是功能分离指数增加,随后是第二阶段,在功能整合占主导地位后,功能分离消失。值得注意的是,错误的试验与分离-整合曲线的不同或中断序列相关,网络中心性和模块性的度量可以识别出振荡网络动态的关键方面。此外,计算研究进一步支持了实验结果。大脑的功能组织可能会根据 WM 任务的信息处理需求,按照一个两步原子方案做出反应,其中分离和整合交替主导功能配置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验